Do you want to publish a course? Click here

Ram-pressure stripped molecular gas in the Virgo spiral galaxy NGC 4522

143   0   0.0 ( 0 )
 Added by Bernd Vollmer
 Publication date 2008
  fields Physics
and research's language is English
 Authors B. Vollmer




Ask ChatGPT about the research

IRAM 30m 12CO(1-0) and 12CO(2-1) HERA observations are presented for the ram-pressure stripped Virgo spiral galaxy NGC 4522. The CO emission is detected in the galactic disk and the extraplanar gas. The extraplanar CO emission follows the morphology of the atomic gas closely but is less extended. The CO maxima do not appear to correspond to regions where there is peak massive star formation as probed by Halpha emission. The presence of molecular gas is a necessary but not sufficient condition for star formation. Compared to the disk gas, the molecular fraction of the extraplanar gas is 30% lower and the star formation efficiency of the extraplanar gas is about 3 times lower. The comparison with an existing dynamical model extended by a recipe for distinguishing between atomic and molecular gas shows that a significant part of the gas is stripped in the form of overdense arm-like structures. It is argued that the molecular fraction depends on the square root of the total large-scale density. Based on the combination of the CO/Halpha and an analytical model, the total gas density is estimated to be about 4 times lower than that of the galactic disk. Molecules and stars form within this dense gas according to the same laws as in the galactic disk, i.e. they mainly depend on the total large-scale gas density. Star formation proceeds where the local large-scale gas density is highest. Given the complex 3D morphology this does not correspond to the peaks in the surface density. In the absence of a confining gravitational potential, the stripped gas arms will most probably disperse; i.e. the density of the gas will decrease and star formation will cease.



rate research

Read More

234 - T. Lizee , B. Vollmer , J. Braine 2020
NGC 4654 is a Virgo galaxy seen almost face-on, which undergoes nearly edge-on gas ram pressure stripping and a fly-by gravitational interaction with another massive galaxy, NGC 4639. NGC 4654 shows a strongly compressed gas region near the outer edge of the optical disk, with HI surface densities (HSDR), exceeding the canonical value of 10-15 Msun/pc2. New IRAM 30m HERA CO(2-1) data of NGC 4654 are used to study the physical conditions of the ISM. The CO-to-H$_2$ conversion factor was estimated and found to be one to two times the Galactic value with significant decrease in the ratio between the molecular fraction and the total ISM pressure in the HSDR, self-gravitating gas, a Toomre parameter below $Q=1$ and star-formation efficiency 1.5-2 times higher. Analytical models were used to reproduce radial profiles of the SFR and the atomic and molecular surface densities. A Toomre parameter of $rm Q sim 0.8$ combined with an increase in the velocity dispersion of 5 km/s are necessary conditions to simultaneously reproduce the gas surface densities and the SFR. A dynamical model was used to reproduce the gas distribution of NGC 4654. The comparison between the velocity dispersion given by the moment 2 map and the intrinsic 3D velocity dispersion from the model were used to discriminate between regions of broader linewidths caused by a real increase in the velocity dispersion and those caused by an unresolved velocity gradient only. We found that the 5 km/s increase in the intrinsic velocity dispersion is compatible with observations. During a period of gas compression through external interactions, the gas surface density is enhanced, leading to an increased SFR and stellar feedback. Under the influence of stellar feedback, the gas density increases only moderately. The stellar feedback acts as a regulator of star-formation, increasing the turbulent velocity within the region.
We investigate the effects of ram pressure on the molecular ISM in the disk of the Coma cluster galaxy NGC 4921, via high resolution CO observations. We present 6 resolution CARMA CO(1-0) observations of the full disk, and 0.4 resolution ALMA CO(2-1) observations of the leading quadrant, where ram pressure is strongest. We find evidence for compression of the dense interstellar medium (ISM) on the leading side, spatially correlated with intense star formation activity in this zone. We also detect molecular gas along kiloparsec-scale filaments of dust extending into the otherwise gas stripped zone of the galaxy, seen in HST images. We find the filaments are connected kinematically as well as spatially to the main gas ridge located downstream, consistent with cloud decoupling inhibited by magnetic binding, and inconsistent with a simulated filament formed via simple ablation. Furthermore, we find several clouds of molecular gas $sim 1-3$ kpc beyond the main ring of CO that have velocities which are blueshifted by up to 50 km s$^{-1}$ with respect to the rotation curve of the galaxy. These are some of the only clouds we detect that do not have any visible dust extinction associated with them, suggesting that they are located behind the galaxy disk midplane and are falling back towards the galaxy. Simulations have long predicted that some gas removed from the galaxy disk will fall back during ram pressure stripping. This may be the first clear observational evidence of gas re-accretion in a ram pressure stripped galaxy.
Deep Effelsberg 100-m HI observations of 5 HI deficient Virgo spiral galaxies are presented. No new extended HI tail is found in these galaxies. The already known HI tail north of NGC 4388 does not significantly extend further than a WSRT image has shown. Based on the absence of HI tails in a sample of 6 Virgo spiral galaxies and a balance of previous detections of extraplanar gas in the targeted galaxies we propose a global picture where the outer gas disk (beyond the optical radius R_25) is removed much earlier than expected by the classical ram pressure criterion. Based on the two-phase nature of atomic hydrogen located in a galactic disk, we argue that the warm diffuse HI in the outer galactic disk is evaporated much more rapidly than the cold dense HI. Therefore, after a ram pressure stripping event we can only observe atomic hydrogen which was cold and dense before it was removed from the galactic disk. This global picture is consistent with all available observations. We detect between 0.3% and 20% of the stripped mass assuming an initially non-deficient galaxy and between 3% and 70% of the stripped mass assuming an initially HI deficient galaxy (def=0.4). Under the latter assumption we estimate an evaporation rate by dividing the missing mass by the estimated time to peak ram pressure from dynamical simulations. We find evaporation rates between 10 and 100 M_solar/yr.
134 - B. Vollmer 2008
VIVA HI observations of the Virgo spiral galaxy NGC 4501 are presented. The HI disk is sharply truncated to the southwest, well within the stellar disk. A region of low surface-density gas, which is more extended than the main HI disk, is discovered northeast of the galaxy center. These data are compared to existing 6cm polarized radio continuum emission, Halpha, and optical broad band images. We observe a coincidence between the western HI and polarized emission edges, on the one hand, and a faint Halpha emission ridge, on the other. The polarized emission maxima are located within the gaps between the spiral arms and the faint Halpha ridge. Based on the comparison of these observations with a sample of dynamical simulations with different values for maximum ram pressure and different inclination angles between the disk and the orbital plane,we conclude that ram pressure stripping can account for the main observed characteristics. NGC 4501 is stripped nearly edge-on, is heading southwest, and is ~200-300 Myr before peak ram pressure, i.e. its closest approach to M87. The southwestern ridge of enhanced gas surface density and enhanced polarized radio-continuum emission is due to ram pressure compression. It is argued that the faint western Halpha emission ridge is induced by nearly edge-on ram pressure stripping. NGC 4501 represents an especially clear example of early stage ram pressure stripping of a large cluster-spiral galaxy.
We present IRAM 30m sensitive upper limits on CO emission in the ram pressure stripped dwarf Virgo galaxy IC3418 and in a few positions covering HII regions in its prominent 17 kpc UV/Ha gas-stripped tail. In the central few arcseconds of the galaxy, we report a possible marginal detection of about 1x10^6 M_sun of molecular gas (assuming a Galactic CO-to-H_2 conversion factor) that could correspond to a surviving nuclear gas reservoir. We estimate that there is less molecular gas in the main body of IC3418, by at least a factor of 20, than would be expected from the pre-quenching UV-based star formation rate assuming the typical gas depletion timescale of 2 Gyr. Given the lack of star formation in the main body, we think the H_2-deficiency is real, although some of it may also arise from a higher CO-to-H_2 factor typical in low-metallicity, low-mass galaxies. The presence of HII regions in the tail of IC3418 suggests that there must be some dense gas; however, only upper limits of < 1x10^6 M_sun were found in the three observed points in the outer tail. This yields an upper limit on the molecular gas content of the whole tail < 1x10^7 M_sun, which is an amount similar to the estimates from the observed star formation rate over the tail. We also present strong upper limits on the X-ray emission of the stripped gas in IC3418 from a new Chandra observation. The measured X-ray luminosity of the IC3418 tail is about 280 times lower than that of ESO 137-001, a spiral galaxy in a more distant cluster with a prominent ram pressure stripped tail. Non-detection of any diffuse X-ray emission in the IC3418 tail may be due to a low gas content in the tail associated with its advanced evolutionary state and/or due to a rather low thermal pressure of the surrounding intra-cluster medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا