Do you want to publish a course? Click here

An algebraic approach to the set of intervals (a new approach of arithmetic of intervals)

236   0   0.0 ( 0 )
 Added by Nicolas Goze
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

In this paper we present the set of intervals as a normed vector space. We define also a four-dimensional associative algebra whose product gives the product of intervals in any cases. This approach allows to give a notion of divisibility and in some cases an euclidian division. We introduce differential calculus and give some applications.



rate research

Read More

This paper is devoted to a new approach of the arithmetic of intervals. We present the set of intervals as a normed vector space. We define also a four-dimensional associative algebra whose product gives the product of intervals in any cases. This approach allows to give a notion of divisibility and in some cases an euclidian division. We introduce differential calculus and give some applications.
186 - Giorgio Mantica 2013
We describe a numerical technique to compute the equilibrium measure, in logarithmic potential theory, living on the attractor of Iterated Function Systems composed of one-dimensional affine maps. This measure is obtained as the limit of a sequence of equilibrium measures on finite unions of intervals. Although these latter are known analytically, their computation requires the evaluation of a number of integrals and the solution of a non-linear set of equations. We unveil the potential numerical dangers hiding in these problems and we propose detailed solutions to all of them. Convergence of the procedure is illustrated in specific examples and is gauged by computing the electrostatic potential.
246 - Tomoaki Okayama 2016
The Sinc approximation is a function approximation formula that attains exponential convergence for rapidly decaying functions defined on the whole real axis. Even for other functions, the Sinc approximation works accurately when combined with a proper variable transformation. The convergence rate has been analyzed for typical cases including finite, semi-infinite, and infinite intervals. Recently, for verified numerical computations, a more explicit, computable error bound has been given in the case of a finite interval. In this paper, such explicit error bounds are derived for other cases.
135 - Chih-Hao Fu , Yi-Jian Du , Bo Feng 2012
One important discovery in recent years is that the total amplitude of gauge theory can be written as BCJ form where kinematic numerators satisfy Jacobi identity. Although the existence of such kinematic numerators is no doubt, the simple and explicit construction is still an important problem. As a small step, in this note we provide an algebraic approach to construct these kinematic numerators. Under our Feynman-diagram-like construction, the Jacobi identity is manifestly satisfied. The corresponding color ordered amplitudes satisfy off-shell KK-relation and off-shell BCJ relation similar to the color ordered scalar theory. Using our construction, the dual DDM form is also established.
121 - Lu Chen , Tobias Fritz 2021
According to the algebraic approach to spacetime, a thoroughgoing dynamicism, physical fields exist without an underlying manifold. This view is usually implemented by postulating an algebraic structure (e.g., commutative ring) of scalar-valued functions, which can be interpreted as representing a scalar field, and deriving other structures from it. In this work, we point out that this leads to the unjustified primacy of an undetermined scalar field. Instead, we propose to consider algebraic structures in which all (and only) physical fields are primitive. We explain how the theory of emph{natural operations} in differential geometry---the modern formalism behind classifying diffeomorphism-invariant constructions---can be used to obtain concrete implementations of this idea for any given collection of fields. For concrete examples, we illustrate how our approach applies to a number of particular physical fields, including electrodynamics coupled to a Weyl spinor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا