Do you want to publish a course? Click here

A Constraint on brown dwarf formation via ejection: radial variation of the stellar and substellar mass function of the young open cluster IC2391

194   0   0.0 ( 0 )
 Added by Steve Boudreault
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the Wide Field Imager (WFI) at the ESO 2.2m telescope at La Silla and the CPAPIR camera at the CTIO 1.5m telescope at Cerro Tololo, we have performed an extensive, multiband photometric survey of the open cluster IC2391 (D~146pc, age~50Myr, solar metallicity). Here we present the results from our photometric survey and from a spectroscopic follow-up of the central part of the survey.



rate research

Read More

We present the stellar and substellar mass function of the open cluster IC2391, plus its radial dependence, and use this to put constraints on the formation mechanism of brown dwarfs. Our multiband optical and infrared photometric survey with spectroscopic follow-up covers 11 square degrees, making it the largest survey of this cluster to date. We observe a radial variation in the mass function over the range 0.072 to 0.3Msol, but no significant variation in the mass function below the substellar boundary at the three cluster radius intervals analyzed. This lack of radial variation for low masses is what we would expect with the ejection scenario for brown dwarf formation, although considering that IC2391 has an age about three times older than its crossing time, we expect that brown dwarfs with a velocity greater than the escape velocity have already escaped the cluster. Alternatively, the variation in the mass function of the stellar objects could be an indication that they have undergone mass segregation via dynamical evolution. We also observe a significant variation across the cluster in the colour of the (background) field star locus in colour-magnitude diagrams and conclude that this is due to variable background extinction in the Galactic plane. From our preliminary spectroscopic follow-up to confirm brown dwarf status and cluster membership, we find that all candidates are M dwarfs (in either the field or the cluster), demonstrating the efficiency of our photometric selection method in avoiding contaminants (e.g. red giants). About half of our photometric candidates for which we have spectra are spectroscopically-confirmed as cluster members; two are new spectroscopically-confirmed brown dwarf members of IC2391.
Although the stellar and substellar populations have been studied in various young and old open clusters, additional studies in clusters in the age range from 5 to 100 Myr is crucial (e.g. to give more constrains on initial mass function variation with improved statistics). Among the open cluster candidates from recent studies, two clusters are best suited for photometric survey of very-low mass stars and brown dwarfs, considering their youth and relative proximity: Alessi 5 (t ~ 40 Myr, d ~ 400 pc) and beta Monocerotis (t ~ 9.1 Myr, d ~ 400 pc). For both clusters, we performed an optical and near-infrared photometric survey, and a virtual observatory survey. Our survey is predicted to be sensitive from the massive B main sequence stars down to brown dwarfs of 30 M_Jup. Here, we present and discuss preliminary results, including the mass function obtained for Alessi 5, which is surprisingly very similar to the mass function of the Hyades (t ~ 600 Myr), although they are of very different ages.
We have studied the star formation history and the initial mass function (IMF) using the age and mass derived from spectral energy distribution (SED) fitting and from color-magnitude diagrams. We also examined the physical and structural parameters of more than 1,000 pre-main sequence stars in NGC 2264 using the on-line SED fitting tool (SED fitter) of Robitaille et al. The cumulative distribution of stellar ages showed a distinct difference among SFRs. The results indicate that star formation in NGC 2264 started at the surface region (Halo and Field regions) about 6 - 7 Myr ago, propagated into the molecular cloud and finally triggered the recent star formation in the Spokes cluster. The kind of sequential star formation that started in the low-density surface region (Halo and Field regions) implies that star formation in NGC 2264 was triggered by an external source. The IMF of NGC 2264 was determined in two different ways. The slope of the IMF of NGC 2264 for massive stars (log m >= 0.5) is -1.7 pm 0.1, which is somewhat steeper than the so-called standard Salpeter-Kroupa IMF. We also present data for 79 young brown dwarf candidates.
We investigate the mass function in the substellar domain down to a few Jupiter masses in the young sigma Orionis open cluster (3+/-2 Ma, d = 360^+70_-60 pc). We have performed a deep IJ-band search, covering an area of 790 arcmin^2 close to the cluster centre. This survey was complemented with an infrared follow-up in the HKs- and Spitzer 3.6-8.0 mum-bands. Using colour-magnitude diagrams, we have selected 49 candidate cluster members in the magnitude interval 16.1 mag < I < 23.0 mag. Accounting for flux excesses at 8.0 mum and previously known spectral features of youth, 30 objects are bona fide cluster members. Four are first identified from our optical-near infrared data. Eleven have most probable masses below the deuterium burning limit and are classified as planetary-mass object candidates. The slope of the substellar mass spectrum (Delta N / Delta M = a M^-alpha) in the mass interval 0.11 Msol M < 0.006 Msol is alpha = +0.6+/-0.2. Any opacity mass-limit, if these objects form via fragmentation, may lie below 0.006 Msol. The frequency of sigma Orionis brown dwarfs with circumsubstellar discs is 47+/-15 %. The continuity in the mass function and in the frequency of discs suggests that very low-mass stars and substellar objects, even below the deuterium-burning mass limit, may share the same formation mechanism.
86 - Ch. Stuetz 2006
It is unclear whether chemically peculiar stars of the upper main sequence represent a class completely distinct from normal A-type stars, or whether there exists a continuous transition from the normal to the most peculiar late F- to early B-type stars. A systematic abundance analysis of open cluster early-type stars would help to relate the observed differences of the chemical abundances of the photospheres to other stellar characteristics, without being concerned by possible different original chemical composition. Furthermore, if a continuous transition region from the very peculiar to the so called normal A-F stars exists, it should be possible to detect objects with mild peculiarities. As a first step of a larger project, an abundance analysis of 5 F-A type stars in the young cluster IC2391 was performed using high resolution spectra obtained with the UVES instrument of the ESO VLT. Our targets seem to follow a general abundance pattern: close to solar abundance of the light elements and iron peak elements, heavy elements are slightly overabundant with respect to the sun, similar to what was found in previous studies of normal field A-type stars of the galactic plane. We detected a weakly chemically peculiar star, HD74044. Its element pattern contains characteristics of CP1 as well as CP2 stars, enhanced abundances of iron peak elements and also higher abundances of Sc, Y, Ba and Ce. We did not detect a magnetic field in this star (detection limit was 2kG). We also studied the star SHJM2, proposed as a pre-main sequence object in previous works. Using spectroscopy we found a high surface gravity, which suggests that the star is very close to the ZAMS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا