Do you want to publish a course? Click here

An Opinion Dynamics Model for the Diffusion of Innovations

153   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamics of the adoption of new products by agents with continuous opinions and discrete actions (CODA). The model is such that the refusal in adopting a new idea or product is increasingly weighted by neighbor agents as evidence against the product. Under these rules, we study the distribution of adoption times and the final proportion of adopters in the population. We compare the cases where initial adopters are clustered to the case where they are randomly scattered around the social network and investigate small world effects on the final proportion of adopters. The model predicts a fat tailed distribution for late adopters which is verified by empirical data.



rate research

Read More

It is known that individual opinions on different policy issues often align to a dominant ideological dimension (e.g. left vs. right) and become increasingly polarized. We provide an agent-based model that reproduces these two stylized facts as emergent properties of an opinion dynamics in a multi-dimensional space of continuous opinions. The mechanisms for the change of agents opinions in this multi-dimensional space are derived from cognitive dissonance theory and structural balance theory. We test assumptions from proximity voting and from directional voting regarding their ability to reproduce the expected emerging properties. We further study how the emotional involvement of agents, i.e. their individual resistance to change opinions, impacts the dynamics. We identify two regimes for the global and the individual alignment of opinions. If the affective involvement is high and shows a large variance across agents, this fosters the emergence of a dominant ideological dimension. Agents align their opinions along this dimension in opposite directions, i.e. create a state of polarization.
Information overload in the modern society calls for highly efficient recommendation algorithms. In this letter we present a novel diffusion based recommendation model, with users ratings built into a transition matrix. To speed up computation we introduce a Green function method. The numerical tests on a benchmark database show that our prediction is superior to the standard recommendation methods.
We study the joint evolution of worldviews by proposing a model of opinion dynamics, which is inspired in notions from evolutionary ecology. Agents update their opinion on a specific issue based on their propensity to change -- asserted by the social neighbours -- weighted by their mutual similarity on other issues. Agents are, therefore, more influenced by neighbours with similar worldviews (set of opinions on various issues), resulting in a complex co-evolution of each opinion. Simulations show that the worldview evolution exhibits events of intermittent polarization when the social network is scale-free. This, in turn, trigger extreme crashes and surges in the popularity of various opinions. Using the proposed model, we highlight the role of network structure, bounded rationality of agents, and the role of key influential agents in causing polarization and intermittent reformation of worldviews on scale-free networks.
We introduce a new, and quite general variational model for opinion dynamics based on pairwise interaction potentials and a range of opinion evolution protocols ranging from random interactions to global synchronous flows in the opinion state space. The model supports the concept of topic coupling, allowing opinions held by individuals to be changed via indirect interaction with others on different subjects. Interaction topology is governed by a graph that determines interactions. Our model, which is really a family of variational models, has, as special cases, many of the previously established models for the opinion dynamics. After introducing the model, we study the dynamics of the special case in which the potential is either a tent function or a constructed bell-like curve. We find that even in these relatively simple potential function examples there emerges interesting behavior. We also present results of preliminary numerical explorations of the behavior of the model to motivate questions that can be explored analytically.
Modelling efforts in opinion dynamics have to a large extent ignored that opinion exchange between individuals can also have an effect on how willing they are to express their opinion publicly. Here, we introduce a model of public opinion expression. Two groups of agents with different opinion on an issue interact with each other, changing the willingness to express their opinion according to whether they perceive themselves as part of the majority or minority opinion. We formulate the model as a multi-group majority game and investigate the Nash equilibria. We also provide a dynamical systems perspective: Using the reinforcement learning algorithm of $Q$-learning, we reduce the $N$-agent system in a mean-field approach to two dimensions which represent the two opinion groups. This two-dimensional system is analyzed in a comprehensive bifurcation analysis of its parameters. The model identifies social-structural conditions for public opinion predominance of different groups. Among other findings, we show under which circumstances a minority can dominate public discourse.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا