Folding 3-noncrossing RNA pseudoknot structures


Abstract in English

In this paper we present a selfcontained analysis and description of the novel {it ab initio} folding algorithm {sf cross}, which generates the minimum free energy (mfe), 3-noncrossing, $sigma$-canonical RNA structure. Here an RNA structure is 3-noncrossing if it does not contain more than three mutually crossing arcs and $sigma$-canonical, if each of its stacks has size greater or equal than $sigma$. Our notion of mfe-structure is based on a specific concept of pseudoknots and respective loop-based energy parameters. The algorithm decomposes into three parts: the first is the inductive construction of motifs and shadows, the second is the generation of the skeleta-trees rooted in irreducible shadows and the third is the saturation of skeleta via context dependent dynamic programming routines.

Download