Although most networks in nature exhibit complex topology the origins of such complexity remains unclear. We introduce a model of a growing network of interacting agents in which each new agents membership to the network is determined by the agents effect on the networks global stability. It is shown that out of this stability constraint, scale free networks emerges in a self organized manner, offering an explanation for the ubiquity of complex topological properties observed in biological networks.
Functional networks provide a topological description of activity patterns in the brain, as they stem from the propagation of neural activity on the underlying anatomical or structural network of synaptic connections. This latter is well known to be organized in hierarchical and modular way. While it is assumed that structural networks shape their functional counterparts, it is also hypothesized that alterations of brain dynamics come with transformations of functional connectivity. In this computational study, we introduce a novel methodology to monitor the persistence and breakdown of hierarchical order in functional networks, generated from computational models of activity spreading on both synthetic and real structural connectomes. We show that hierarchical connectivity appears in functional networks in a persistent way if the dynamics is set to be in the quasi-critical regime associated with optimal processing capabilities and normal brain function, while it breaks down in other (supercritical) dynamical regimes, often associated with pathological conditions. Our results offer important clues for the study of optimal neurocomputing architectures and processes, which are capable of controlling patterns of activity and information flow. We conclude that functional connectivity patterns achieve optimal balance between local specialized processing (i.e. segregation) and global integration by inheriting the hierarchical organization of the underlying structural architecture.
A self-organized model with social percolation process is proposed to describe the propagations of information for different trading ways across a social system and the automatic formation of various groups within market traders. Based on the market structure of this model, some stylized observations of real market can be reproduced, including the slow decay of volatility correlations, and the fat tail distribution of price returns which is found to cross over to an exponential-type asymptotic decay in different dimensional systems.
Evolutionary game theory is used to model the evolution of competing strategies in a population of players. Evolutionary stability of a strategy is a dynamic equilibrium, in which any competing mutated strategy would be wiped out from a population. If a strategy is weak evolutionarily stable, the competing strategy may manage to survive within the network. Understanding the network-related factors that affect the evolutionary stability of a strategy would be critical in making accurate predictions about the behaviour of a strategy in a real-world strategic decision making environment. In this work, we evaluate the effect of network topology on the evolutionary stability of a strategy. We focus on two well-known strategies known as the Zero-determinant strategy and the Pavlov strategy. Zero-determinant strategies have been shown to be evolutionarily unstable in a well-mixed population of players. We identify that the Zero-determinant strategy may survive, and may even dominate in a population of players connected through a non-homogeneous network. We introduce the concept of `topological stability to denote this phenomenon. We argue that not only the network topology, but also the evolutionary process applied and the initial distribution of strategies are critical in determining the evolutionary stability of strategies. Further, we observe that topological stability could affect other well-known strategies as well, such as the general cooperator strategy and the cooperator strategy. Our observations suggest that the variation of evolutionary stability due to topological stability of strategies may be more prevalent in the social context of strategic evolution, in comparison to the biological context.
We compare phase transition and critical phenomena of bond percolation on Euclidean lattices, nonamenable graphs, and complex networks. On a Euclidean lattice, percolation shows a phase transition between the nonpercolating phase and percolating phase at the critical point. The critical point is stretched to a finite region, called the critical phase, on nonamenable graphs. To investigate the critical phase, we introduce a fractal exponent, which characterizes a subextensive order of the system. We perform the Monte Carlo simulations for percolation on two nonamenable graphs - the binary tree and the enhanced binary tree. The former shows the nonpercolating phase and the critical phase, whereas the latter shows all three phases. We also examine the possibility of critical phase in complex networks. Our conjecture is that networks with a growth mechanism have only the critical phase and the percolating phase. We study percolation on a stochastically growing network with and without a preferential attachment mechanism, and a deterministically growing network, called the decorated flower, to show that the critical phase appears in those models. We provide a finite-size scaling by using the fractal exponent, which would be a powerful method for numerical analysis of the phase transition involving the critical phase.
In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we first review the basic ideas behind fractal theory and SOC. We then briefly review some results in the field of complex networks, and some of the models that have been proposed. Finally, we present a self-organized model recently proposed by Garlaschelli et al. [Nat. Phys. 3, 813 (2007)] that couples the fitness network model defined by Caldarelli et al. [Phys. Rev. Lett. 89, 258702 (2002)] with the evolution model proposed by Bak and Sneppen [Phys. Rev. Lett. 71, 4083 (1993)] as a prototype of SOC. Remarkably, we show that the results obtained for the two models separately change dramatically when they are coupled together. This indicates that self-organized networks may represent an entirely novel class of complex systems, whose properties cannot be straightforwardly understood in terms of what we have learnt so far.
J. I. Perotti
,O. V. Billoni
,F. A. Tamarit
.
(2009)
.
"Emergent self-organized complex network topology out of stability constraints"
.
Sergio Alejandro Cannas
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا