Do you want to publish a course? Click here

Connection between Coulomb and harmonic oscillator potentials in relativistic quantum mechanics

280   0   0.0 ( 0 )
 Added by Bo Fu
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Levi-Civita transformation is applied in the two-dimensional (2D) Dirac and Klein-Gordon (KG) equations with equal external scalar and vector potentials. The Coulomb and harmonic oscillator problems are connected via the Levi-Civita transformation. These connections lead to an approach to solve the Coulomb problems using the results of the harmonic oscillator potential in the above-mentioned relativistic systems.



rate research

Read More

67 - G. Levai , B. Konya , Z. Papp 1998
Quantum mechanical models and practical calculations often rely on some exactly solvable models like the Coulomb and the harmonic oscillator potentials. The $D$ dimensional generalized Coulomb potential contains these potentials as limiting cases, thus it establishes a continuous link between the Coulomb and harmonic oscillator potentials in various dimensions. We present results which are necessary for the utilization of this potential as a model and practical reference problem for quantum mechanical calculations. We define a Hilbert space basis, the generalized Coulomb-Sturmian basis, and calculate the Greens operator on this basis and also present an SU(1,1) algebra associated with it. We formulate the problem for the one-dimensional case too, and point out that the complications arising due to the singularity of the one-dimensional Coulomb problem can be avoided with the use of the generalized Coulomb potential.
We solve the generalized relativistic harmonic oscillator in 1+1 dimensions in the presence of a minimal length. Using the momentum space representation, we explore all the possible signs of the potentials and discuss their bound-state solutions for fermion and antifermions. Furthermore, we also find an isolated solution from the Sturm-Liouville scheme. All cases already analyzed in the literature, are obtained as particular cases.
168 - A.V. Turbiner , E. Shuryak 2021
It is shown that for one-dimensional anharmonic oscillator with potential $V(x)= a x^2+ldots=frac{1}{g^2},hat{V}(gx)$ (and for perturbed Coulomb problem $V(r)=frac{alpha}{r} + ldots = g,tilde{V}(gr)$) the Perturbation Theory in powers of coupling constant $g$ (weak coupling regime) and semiclassical expansion in powers of $hbar^{1/2}$ for energies coincide. %The same is true for strong coupling regime expansion in inverse fractional powers in $g$ of energy. It is related to the fact that the dynamics developed in two spaces: $x (r)$-space and in $gx (gr)$ space, leads to the same energy spectra. The equations which govern dynamics in these two spaces, the Riccati-Bloch equation and the Generalized Bloch(GB) equation, respectively, are presented. It is shown that perturbation theory for logarithmic derivative of wave function in $gx (gr)$ space leads to true semiclassical expansion in powers of $hbar^{1/2}$ and corresponds to flucton calculus for density matrix in path integral formalism in Euclidean (imaginary) time.
A mapping is obtained relating radial screened Coulomb systems with low screening parameters to radial anharmonic oscillators in N-dimensional space. Using the formalism of supersymmetric quantum mechanics, it is shown that exact solutions of these potentials exist when the parameters satisfy certain constraints.
We apply the ideas of effective field theory to nonrelativistic quantum mechanics. Utilizing an artificial boundary of ignorance as a calculational tool, we develop the effective theory using boundary conditions to encode short-ranged effects that are deliberately not modeled; thus, the boundary conditions play a role similar to the effective action in field theory. Unitarity is temporarily violated in this method, but is preserved on average. As a demonstration of this approach, we consider the Coulomb interaction and find that this effective quantum mechanics can predict the bound state energies to very high accuracy with a small number of fitting parameters. It is also shown to be equivalent to the theory of quantum defects, but derived here using an effective framework. The method respects electromagnetic gauge invariance and also can describe decays due to short-ranged interactions, such as those found in positronium. Effective quantum mechanics appears applicable for systems that admit analytic long-range descriptions, but whose short-ranged effects are not reliably or efficiently modeled. Potential applications of this approach include atomic and condensed matter systems, but it may also provide a useful perspective for the study of blackholes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا