No Arabic abstract
We use renormalization-group methods in effective field theory to improve the theoretical prediction for the cross section for Higgs-boson production at hadron colliders. In addition to soft-gluon resummation at NNNLL, we also resum enhanced contributions of the form (C_Apialpha_s)^n, which arise in the analytic continuation of the gluon form factor to time-like momentum transfer. This resummation is achieved by evaluating the matching corrections arising at the Higgs-boson mass scale at a time-like renormalization point mu^2<0, followed by renormalization-group evolution to mu^2>0. We match our resummed result to NNLO fixed-order perturbation theory and give numerical predictions for the total production cross section as a function of the Higgs-boson mass. Resummation effects are significant even at NNLO, where our improved predictions for the cross sections at the Tevatron and the LHC exceed the fixed-order predictions by about 13% and 8%, respectively, for m_H=120 GeV. We also discuss the application of our technique to other time-like processes such as Drell-Yan production, e^+ e^- --> hadrons, and hadronic decays of the Higgs boson.
I report on a calculation of the inclusive Higgs boson production cross section at hadron colliders at next-to-next-to-leading order in QCD. The result is computed as an expansion about the threshold region. By continuing the expansion to very high order, we map the result onto basis functions and obtain the result in closed analytic form.
We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the Minimal Supersymmetric Standard Model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large $tan beta$, neutral Higgs boson pair production might even be observable in the $4 b$ final state during the next run of the Tevatron collider.
We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, this result represents the first analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.
The search for Higgs bosons and extensions of the Standard Model of Elementary Particle Physics are main tasks of the Large Hadron Collider (LHC) at CERN which will start operation mid-2008. In this thesis processes which can be used to detect supersymmetric Higgs bosons at the LHC were considered. First a computer program was written which completes the toolbox for automatic calculations of hadronic cross sections. Using this program, the supersymmetric QCD corrections to associated H-W+-production and h0-production via vector-boson fusion and in association with heavy quarks were calculated. The corrections partly give significant contributions to the total cross section. Additionally, the possibility to measure the quartic Higgs self-coupling via triple-Higgs production was investigated and found to be challenging.
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.