Do you want to publish a course? Click here

Electromagnetic form factor via Bethe-Salpeter amplitude in Minkowski space

305   0   0.0 ( 0 )
 Added by Vladimir Karmanov
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

For a relativistic system of two scalar particles, we find the Bethe-Salpeter amplitude in Minkowski space and use it to compute the electromagnetic form factor. The comparison with Euclidean space calculation shows that the Wick rotation in the form factor integral induces errors which increase with the momentum transfer Q^2. At JLab domain (Q^2=10 GeV^2/c^2), they are about 30%. Static approximation results in an additional and more significant error. On the contrary, the form factor calculated in light-front dynamics is almost indistinguishable from the Minkowski space one.



rate research

Read More

Using the solutions of the Bethe-Salpeter equation in Minkowski space for bound and scattering states found in previous works, we calculate the transition electromagnetic form factor describing the electro-disintegration of a bound system.
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
The electromagnetic form factors calculated through Euclidean Bethe-Salpeter amplitude and through the light-front wave function are compared with the one found using the Bethe-Salpeter amplitude in Minkowski space. The form factor expressed through the Euclidean Bethe-Salpeter amplitude (both within and without static approximation) considerably differs from the Minkowski one, whereas form factor found in the light-front approach is almost indistinguishable from it.
We review a method to directly solve the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the many singularities which appear in the kernel and propagators. The off-mass shell scattering amplitude for spinless particles interacting by a one boson exchange was computed for the first time. Using our Minkowski space solutions for the initial (bound) and final (scattering) states, we calculate elastic and transition (bound to scattering state) electromagnetic form factors. The conservation of the transition electromagnetic current J.q=0, verified numerically, confirms the validity of our solutions.
We present a method to directly solving the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the singularities which appear in the kernel, propagators and Bethe-Salpeter amplitude itself. The off-mass shell scattering amplitude for spinless particles interacting by a one boson exchange is computed for the first time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا