Do you want to publish a course? Click here

Bandstructure Effects in Silicon Nanowire Hole Transport

269   0   0.0 ( 0 )
 Added by Neophytos Neophytou
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bandstructure effects in PMOS transport of strongly quantized silicon nanowire field-effect-transistors (FET) in various transport orientations are examined. A 20-band sp3d5s* spin-orbit-coupled (SO) atomistic tight-binding model coupled to a self consistent Poisson solver is used for the valence band dispersion calculation. A ballistic FET model is used to evaluate the capacitance and current-voltage characteristics. The dispersion shapes and curvatures are strong functions of device size, lattice orientation, and bias, and cannot be described within the effective mass approximation. The anisotropy of the confinement mass in the different quantization directions can cause the charge to preferably accumulate in the (110) and secondly on the (112) rather than (100) surfaces, leading to significant charge distributions for different wire orientations. The total gate capacitance of the nanowire FET devices is, however, very similar for all wires in all the transport orientations investigated ([100], [110], [111]), and is degraded from the oxide capacitance by ~30%. The [111] and secondly the [110] oriented nanowires indicate highest carrier velocities and better ON-current performance compared to [100] wires. The dispersion features and quantization behavior, although a complicated function of physical and electrostatic confinement, can be explained at first order by looking at the anisotropic shape of the heavy-hole valence band.

rate research

Read More

Bandstructure effects in the electronic transport of strongly quantized silicon nanowire field-effect-transistors (FET) in various transport orientations are examined. A 10-band sp3d5s* semi-empirical atomistic tight-binding model coupled to a self consistent Poisson solver is used for the dispersion calculation. A semi-classical, ballistic FET model is used to evaluate the current-voltage characteristics. It is found that the total gate capacitance is degraded from the oxide capacitance value by 30% for wires in all the considered transport orientations ([100], [110], [111]). Different wire directions primarily influence the carrier velocities, which mainly determine the relative performance differences, while the total charge difference is weakly affected. The velocities depend on the effective mass and degeneracy of the dispersions. The [110] and secondly the [100] oriented 3nm thick nanowires examined, indicate the best ON-current performance compared to [111] wires. The dispersion features are strong functions of quantization. Effects such as valley splitting can lift the degeneracies especially for wires with cross section sides below 3nm. The effective masses also change significantly with quantization, and change differently for different transport orientations. For the cases of [100] and [111] wires the masses increase with quantization, however, in the [110] case, the mass decreases. The mass variations can be explained from the non-parabolicities and anisotropies that reside in the first Brillouin zone of silicon.
We have simultaneously measured conductance and thermoelectric power (TEP) of individual silicon and germanium/silicon core/shell nanowires in the field effect transistor device configuration. As the applied gate voltage changes, the TEP shows distinctly different behaviors while the electrical conductance exhibits the turn-off, subthreshold, and saturation regimes respectively. At room temperature, peak TEP value of $sim 300 mu$V/K is observed in the subthreshold regime of the Si devices. The temperature dependence of the saturated TEP values are used to estimate the carrier doping of Si nanowires.
247 - Dengke Ma , Hongru Ding , Han Meng 2015
Wave effects of phonons can give rise to controllability of heat conduction beyond that by particle scattering at surfaces and interfaces. In this work, we propose a new class of 3D nanostructure: a silicon-nanowire-cage (SiNWC) structure consisting of silicon nanowires (SiNWs) connected by nano-cross-junctions (NCJs). We perform equilibrium molecular dynamics (MD) simulations, and find an ultralow value of thermal conductivity of SiNWC, 0.173 Wm-1K-1, which is one order lower than that of SiNWs. By further modal analysis and atomistic Greens function calculations, we identify that the large reduction is due to significant phonon localization induced by the phonon local resonance and hybridization at the junction part in a wide range of phonon modes. This localization effect does not require the cage to be periodic, unlike the phononic crystals, and can be realized in structures that are easier to synthesize, for instance in a form of randomly oriented SiNWs network.
We report on spectroscopy of a single dopant atom in silicon by resonant tunneling between source and drain of a gated nanowire etched from silicon on insulator. The electronic states of this dopant isolated in the channel appear as resonances in the low temperature conductance at energies below the conduction band edge. We observe the two possible charge states successively occupied by spin-up and spin-down electrons under magnetic field. The first resonance is consistent with the binding energy of the neutral $D^0$ state of an arsenic donor. The second resonance shows a reduced charging energy due to the electrostatic coupling of the charged $D^-$ state with electrodes. Excited states and Zeeman splitting under magnetic field present large energies potentially useful to build atomic scale devices.
The giant piezoresistance (PZR) previously reported in silicon nanowires is experimentally investigated in a large number of surface depleted silicon nano- and micro-structures. The resistance is shown to vary strongly with time due to electron and hole trapping at the sample surfaces. Importantly, this time varying resistance manifests itself as an apparent giant PZR identical to that reported elsewhere. By modulating the applied stress in time, the true PZR of the structures is found to be comparable with that of bulk silicon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا