Do you want to publish a course? Click here

Charged pion form factor between $Q^2$=0.60 and 2.45 GeV$^2$. I. Measurements of the cross section for the ${^1}$H($e,epi^+$)$n$ reaction

208   0   0.0 ( 0 )
 Added by Tanja Horn
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Cross sections for the reaction ${^1}$H($e,epi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2.45 GeV$^2$ at an invariant mass of the virtual photon-nucleon system of $W$=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions $sigma_L$, $sigma_T$, $sigma_{LT}$, and $sigma_{TT}$. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable $t$ at the different values of $Q^2$ are presented. Some global features of the data are discussed, and the data are compared with the results of some model calculations for the reaction ${^1}$H($e,epi^+$)$n$.



rate research

Read More

220 - G.M. Huber , H.P. Blok , T. Horn 2008
The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,epi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.
The data analysis for the reaction H(e,e pi^+)n, which was used to determine values for the charged pion form factor Fpi for values of Q^2=0.6-1.6 GeV^2, has been repeated with careful inspection of all steps and special attention to systematic uncertainties. Also the method used to extract Fpi from the measured longitudinal cross section was critically reconsidered. Final values for the separated longitudinal and transverse cross sections and the extracted values of Fpi are presented.
The H(e,epi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F_pi) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F_pi is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative Quantum Chromo-Dynamics prediction.
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive $pi^+$ electroproduction reaction $gamma^* p to n pi^+$. The results were obtained from scattering of 6 GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Lab. The kinematic range covered is $1.1<W<3$ GeV and $1<Q^2<6$ GeV$^2$. Results were obtained for about 6000 bins in $W$, $Q^2$, $cos(theta^*)$, and $phi^*$. Except at forward angles, very large target-spin asymmetries are observed over the entire $W$ region. Reasonable agreement is found with phenomenological fits to previous data for $W<1.6$ GeV, but very large differences are seen at higher values of $W$. A GPD-based model is in poor agreement with the data. When combined with cross section measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of $Q^2$, for resonances with masses as high as 2.4 GeV.
The cross section of the $p(e,epi^+)n$ reaction has been measured for five kinematic settings at an invariant mass of $W = 1094$ MeV and for a four-momentum transfer of $Q^2 = 0.078$ (GeV/$c$)$^2$. The measurement has been performed at MAMI using a new short-orbit spectrometer (SOS) of the A1 collaboration, intended for detection of low-energy pions. The transverse and longitudinal cross section terms were separated using the Rosenbluth method and the transverse-longitudinal interference term has been determined from the left-right asymmetry. The experimental cross section terms are compared with the calculations of three models: DMT2001, MAID2007 and $chi$MAID. The results show that we do not yet understand the dynamics of the fundamental pion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا