Do you want to publish a course? Click here

Statistical structure and $gamma$-decay properties of closed shell Pb nuclei

150   0   0.0 ( 0 )
 Added by Naeem Ul Hasan Syed
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The level densities and gamma-ray strength functions of 205-208Pb have been measured with the Oslo method, utilizing the (3He, 3He gamma) and (3He,alpha gamma) reactions on the target nuclei 206Pb and 208Pb. The extracted level densities are consistent with known discrete levels at low excitation energies. The entropies and temperatures in the micro-canonical ensemble have been deduced from the experimental level density. An average entropy difference of Delta S ~ 1.8 k_B has been observed between 205Pb and 206Pb. The gamma-ray strength functions in 205-208Pb are extracted and compared with two models; however, none of them describe the data adequately. Intermediate structures have been observed at lower gamma-ray energies in all the analyzed Pb nuclei. These structures are less pronounced while moving from the doubly-magic nucleus 208Pb to 205Pb.



rate research

Read More

139 - S. Szilner , C.A. Ur , L. Corradi 2007
Multinucleon transfer reactions in 40Ca+96Zr and 90Zr+208Pb have been measured at energies close to the Coulomb barrier in a high resolution gamma-particle coincidence experiment. The large solid angle magnetic spectrometer PRISMA coupled to the CLARA gamma-array has been employed. Trajectory reconstruction has been applied for the complete identification of transfer products. Mass and charge yields, total kinetic energy losses, gamma transitions of the binary reaction partners, and comparison of data with semiclassical calculations are reported. Specific transitions in 95Zr populated in one particle transfer channels are discussed in terms of particle-phonon couplings. The gamma decays from states in 42Ca in the excitation energy region expected from pairing vibrations are also observed.
The signal of isospin-asymmetric phase transition in the evolution of the chemical potential was observed for hot quasi-projectiles produced in the reactions 40,48Ca + 27Al confirming an analogous observation in the lighter system 28Si + 112,124Sn. With increasing mass, the properties of hot quasi-projectiles become increasingly influenced by the secondary emission. Thermodynamical observables exhibit no sensitivity to the different number of missing neutrons in the two reactions 40,48Ca + 27Al, thus providing a signal of dynamical emission of neutrons, which can be related to formation of a very neutron-rich low-density region (neck) between the projectile and target.
131 - Mark D. Baker 2009
The ATLAS detector at the LHC is capable of efficiently separating photons and neutral hadrons based on their shower shapes over a wide range in eta, phi, ET, either in addition to or instead of isolation cuts. This provides ATLAS with a unique strength for direct photon and gamma-jet physics as well as access to the unique capability to measure non-isolated photons from fragmentation or from the medium. We present a first look at the ATLAS direct photon measurement capabilities in Pb+Pb and, for reference, p+p collisions at sqrt(sNN)=5.5 TeV over the region |eta|<2.4.
123 - M. L. Gorelik 2020
The semimicroscopic particle-hole dispersive optical model (PHDOM) is implemented to describe main properties of Isoscalar Giant Multipole Resonances (up to L=3) in medium-heavy closed-shell nuclei. The main properties are characterized by the strength distribution, transition density, partial and total probabilities of direct one-nucleon decay. Calculation results obtained for the 208Pb nucleus are compared with available experimental data.
The Nuclear Level Densities (NLDs) and the $gamma$-ray Strength Functions ($gamma$SFs) of $^{153,155}$Sm have been extracted from (d,p$gamma$) coincidences using the Oslo method. The experimental NLD of $^{153}$Sm is higher than the NLD of $^{155}$Sm, in accordance with microscopic calculations. The $gamma$SFs of $^{153,155}$Sm are in fair agreement with QRPA calculations based on the D1M Gogny interaction. An enhancement is observed in the $gamma$SF for both $^{153,155}$Sm nuclei around 3 MeV in excitation energy and is attributed to the M1 Scissors Resonance (SR). Their integrated strengths were found to be in the range 1.3 - 2.1 and 4.4 - 6.4 $mu^{2}_{N}$ for $^{153}$Sm and $^{155}$Sm, respectively. The strength of the SR for $^{155}$Sm is comparable to those for deformed even-even Sm isotopes from nuclear resonance fluorescence measurements, while that of $^{153}$Sm is lower than expected.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا