Do you want to publish a course? Click here

Doping-Driven Collapse of the SDW Correlation Gap in SmFeAsO$_{1-x}$F$_{x}$

125   0   0.0 ( 0 )
 Added by Ross David McDonald
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the Hall resistivity, $rho_{xy}$ of polycrystalline SmFeAsO$_{1-x}$F$_{x}$ for four different fluorine concentrations from the onset of superconductivity through the collapse of the structural phase transition. For the two more highly-doped samples, $rho_{xy}$ is linear in magnetic field up to 50 T with only weak temperature dependence, reminiscent of a simple Fermi liquid. For the lightly-doped samples with $x<0.15$, we find a low temperature regime characterized $rho_{xy}(H)$ being both non-linear in magnetic field and strongly temperature dependent even though the Hall angle is small. The onset temperature for this non-linear regime is in the vicinity of the structural phase (SPT)/spin density wave (SDW) transitions. The temperature dependence of the Hall resistivity is consistent with a thermal activation of carriers across an energy gap. The evolution of the energy gap with doping is reported.



rate research

Read More

We study the electronic structure of the SmFeAsO(1-x)F(x) alloy by means of first-principle calculations. We find that, contrary to common believe, F-doping does not change the charge balance between electrons and holes free-carriers in SmFeAsO(1-x)F(x). For energies within a narrow energy range across E_F, the effect of F-doping on the band structure dispersion is tiny in both the paramagnetic and stripe antiferromagnetic phase. The charge balance between the conducting FeAs-layer and the SmO(1-x)F(x) charge reservoir layer is not influenced by the compositional change. The additional charge carried by fluorine, with respect to the oxygen, is compensated by a change in the oxidation state of the Sm ion from 3+ to 2+. A comparison with the SmFe(1-x)Co(x)AsO system shows that such charge compensation by the Sm ion is not shared by donors substituting at the Fe site.
331 - H. W. Ou , Y. Zhang , J. F. Zhao 2008
We investigated the temperature dependence of the density-of-states in the iron-based superconductor SmO_1-xF_xFeAs (x=0, 0.12, 0.15, 0.2) with high resolution angle-integrated photoemission spectroscopy. The density-of-states suppression is observed with decreasing temperature in all samples, revealing two characteristic energy scales (10meV and 80meV). However, no obvious doping dependence is observed. We argue that the 10meV suppression is due to an anomalously doping-independent normal state pseudogap, which becomes the superconducting gap once in the superconducting state; and alert the possibility that the 80meV-scale suppression might be an artifact of the polycrystalline samples.
491 - Q. Huang , Jun Zhao , J. W. Lynn 2008
We use neutron scattering to study the structural distortion and antiferromagnetic (AFM) order in LaFeAsO$_{1-x}$F$_{x}$ as the system is doped with fluorine (F) to induce superconductivity. In the undoped state, LaFeAsO exhibits a structural distortion, changing the symmetry from tetragonal (space group $P4/nmm$) to orthorhombic (space group $Cmma$) at 155 K, and then followed by an AFM order at 137 K. Doping the system with F gradually decreases the structural distortion temperature, but suppresses the long range AFM order before the emergence of superconductivity. Therefore, while superconductivity in these Fe oxypnictides can survive in either the tetragonal or the orthorhombic crystal structure, it competes directly with static AFM order.
The iron chalcogenide Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ on the Te-rich side is known to exhibit the strongest electron correlations among the Fe-based superconductors, and is non-superconducting for $x$ < 0.1. In order to understand the origin of such behaviors, we have performed ARPES studies of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($x$ = 0, 0.1, 0.2, and 0.4). The obtained mass renormalization factors for different energy bands are qualitatively consistent with DFT + DMFT calculations. Our results provide evidence for strong orbital dependence of mass renormalization, and systematic data which help us to resolve inconsistencies with other experimental data. The unusually strong orbital dependence of mass renormalization in Te-rich Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ arises from the dominant contribution to the Fermi surface of the $d_{xy}$ band, which is the most strongly correlated and may contribute to the suppression of superconductivity.
232 - Peng Cheng , Huan Yang , Ying Jia 2008
Hall effect and magnetoresistance have been measured on single crystals of $NdFeAsO_{1-x}F_{x}$ with x = 0 ($T_c$ = 0 $ $K) and x = 0.18 ($T_c$ = 50 $ $K). For the undoped samples, strong Hall effect and magnetoresistance with strong temperature dependence were found below about 150 K. The magnetoresistance was found to be as large as 30% at 15 K at a magnetic field of 9 T. From the transport data we found that the transition near 155 K was accomplished in two steps: first one occurs at 155 K which may be associated with the structural transition, the second one takes place at about 140 K which may correspond to the spin-density wave like transition. In the superconducting sample with $T_c$ = 50 $ $K, it is found that the Hall coefficient also reveals a strong temperature dependence with a negative sign. But the magnetoresistance becomes very weak and does not satisfy the Kohlers scaling law. These dilemmatic results (strong Hall effect and very weak magnetoresistance) prevent to understand the normal state electric conduction by a simple multi-band model by taking account the electron and hole pockets. Detailed analysis further indicates that the strong temperature dependence of $R_H$ cannot be easily understood with the simple multi-band model either. A picture concerning a suppression to the density of states at the Fermi energy in lowering temperature is more reasonable. A comparison between the Hall coefficient of the undoped sample and the superconducting sample suggests that the doping may remove the nesting condition for the formation of the SDW order, since both samples have very similar temperature dependence above 175 K.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا