No Arabic abstract
We present radio observations of the optically bright Type IIn supernova SN 1995N. We observed the SN at radio wavelengths with the Very Large Array (VLA) for 11 years. We also observed it at low radio frequencies with the Giant Metrewave Radio Telescope (GMRT) at various epochs within $6.5-10$ years since explosion. Although there are indications of an early optically thick phase, most of the data are in the optically thin regime so it is difficult to distinguish between synchrotron self absorption (SSA) and free-free absorption (FFA) mechanisms. However, the information from other wavelengths indicates that the FFA is the dominant absorption process. Model fits of radio emission with the FFA give reasonable physical parameters. Making use of X-ray and optical observations, we derive the physical conditions of the shocked ejecta and the shocked CSM.
The Type IIn supernovae (SNe IIn) have been found to be associated with significant amounts of dust. These core-collapse events are generally expected to be the final stage in the evolution of highly-massive stars, either while in an extreme red supergiant phase or during a luminous blue variable phase. Both evolutionary scenarios involve substantial pre-supernova mass loss. I have analyzed the SN IIn 1995N in MCG -02-38-017 (Arp 261), for which mid-infrared archival data obtained with the Spitzer Space Telescope in 2009 (~14.7 yr after explosion) and with the Wide-field Infrared Survey Explorer (WISE) in 2010 (~15.6--16.0 yr after explosion) reveal a luminous (~2e7 L_sun) source detected from 3.4 to 24 micron. These observations probe the circumstellar material, set up by pre-SN mass loss, around the progenitor star and indicate the presence of ~0.05--0.12 M_sun of pre-existing, cool dust at ~240 K. This is at least a factor ~10 lower than the dust mass required to be produced from SNe at high redshift, but the case of SN 1995N lends further evidence that highly massive stars could themselves be important sources of dust.
We present an optical and near-infrared photometric and spectroscopic study of supernova (SN) 2009kn spanning ~1.5 yr from the discovery. The optical spectra are dominated by the narrow (full width at half-maximum ~1000 km s^-1) Balmer lines distinctive of a Type IIn SN with P Cygni profiles. Contrarily, the photometric evolution resembles more that of a Type IIP SN with a large drop in luminosity at the end of the plateau phase. These characteristics are similar to those of SN 1994W, whose nature has been explained with two different models with different approaches. The well-sampled data set on SN 2009kn offers the possibility to test these models, in the case of both SN 2009kn and SN 1994W. We associate the narrow P Cygni lines with a swept-up shell composed of circumstellar matter and SN ejecta. The broad emission line wings, seen during the plateau phase, arise from internal electron scattering in this shell. The slope of the light curve after the post-plateau drop is fairly consistent with that expected from the radioactive decay of 56Co, suggesting an SN origin for SN 2009kn. Assuming radioactivity to be the main source powering the light curve of SN 2009kn in the tail phase, we infer an upper limit for 56Ni mass of 0.023 M_sun. This is significantly higher than that estimated for SN 1994W, which also showed a much steeper decline of the light curve after the post-plateau drop. We also observe late-time near-infrared emission which most likely arises from newly formed dust produced by SN 2009kn. As with SN 1994W, no broad lines are observed in the spectra of SN 2009kn, not even in the late-time tail phase.
An optical photometric and spectroscopic analysis of the slowly-evolving Type IIn SN2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in Type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Halpha P-Cygni profile, the absorption component of which has a width of 128 km/s. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.
We present the results based on photometric ($Swift$ UVOT), broad-band polarimetric ($V$ and $R$-band) and optical spectroscopic observations of the Type IIn supernova (SN) 2017hcc. Our study is supplemented with spectropolarimetric data available in literature for this event. The post-peak light curve evolution is slow ($sim$0.2 mag 100 d$^{-1}$ in $b$-band). The spectrum of $sim$+27 d shows a blue continuum with narrow emission lines, typical of a Type IIn SN. Archival polarization data along with the $Gaia$ DR2 distances have been utilized to evaluate the interstellar polarization (ISP) towards the SN direction which is found to be $P_{ISP}$ = 0.17 $pm$ 0.02 per cent and $theta_{ISP}$ = 140$^{circ}$ $pm$ 3$^{circ}$. To extract the intrinsic polarization of SN 2017hcc, both the observed and the literature polarization measurements were corrected for ISP. We noticed a significant decline of $sim$3.5 per cent ($V$-band) in the intrinsic level of polarization spanning a period of $sim$2 months. In contrast, the intrinsic polarization angles remain nearly constant at all epochs. Our study indicates a substantial variation in the degree of asymmetry in either the ejecta and/or the surrounding medium of SN 2017hcc. We also estimate a mass-loss rate of $dot M$ = 0.12 M$_{odot}$ yr$^{-1}$ (for $v_w$ = 20 km s$^{-1}$) which suggests that the progenitor of SN 2017hcc is most likely a Luminous Blue Variable.
We present photometry, spectra, and spectropolarimetry of supernova (SN) 2014ab, obtained through $sim 200$ days after peak brightness. SN 2014ab was a luminous Type IIn SN ($M_V < -19.14$ mag) discovered after peak brightness near the nucleus of its host galaxy, VV 306c. Prediscovery upper limits constrain the time of explosion to within 200 days prior to discovery. While SN 2014ab declined by $sim 1$ mag over the course of our observations, the observed spectrum remained remarkably unchanged. Spectra exhibit an asymmetric emission-line profile with a consistently stronger blueshifted component, suggesting the presence of dust or a lack of symmetry between the far side and near side of the SN. The Pa$beta$ emission line shows a profile very similar to that of H$alpha$, implying that this stronger blueshifted component is caused either through obscuration by large dust grains, occultation by optically thick material, or a lack of symmetry between the far side and near side of the interaction region. Despite these asymmetric line profiles, our spectropolarimetric data show that SN 2014ab has little detected polarization after accounting for the interstellar polarization. This suggests that we are seeing emission from a photosphere that has only small deviation from circular symmetry face-on. We are likely seeing a SN IIn with nearly circular symmetry in the plane normal to our line of sight, but with either large-grain dust or significant asymmetry in the density of circumstellar material or SN ejecta along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as other SNe IIn) may be similar events viewed from different directions.