Do you want to publish a course? Click here

Infinite-randomness quantum critical points induced by dissipation

119   0   0.0 ( 0 )
 Added by Thomas Vojta
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a strong-disorder renormalization group to study quantum phase transitions with continuous O$(N)$ symmetry order parameters under the influence of both quenched disorder and dissipation. For Ohmic dissipation, as realized in Hertz theory of the itinerant antiferromagnetic transition or in the superconductor-metal transition in nanowires, we find the transition to be governed by an exotic infinite-randomness fixed point in the same universality class as the (dissipationless) random transverse-field Ising model. We determine the critical behavior and calculate key observables at the transition and in the associated quantum Griffiths phase. We also briefly discuss the cases of superohmic and subohmic dissipations.



rate research

Read More

We establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end we study the quantum phase transition of gapless Dirac fermions coupled to a $mathbb{Z}_3$ symmetric order parameter within a Gross-Neveu-Yukawa model in 2+1 dimensions, appropriate for the Kekule transition in honeycomb lattice materials. For this model the standard Landau-Ginzburg approach suggests a first order transition due to the symmetry-allowed cubic terms in the action. At zero temperature, however, quantum fluctuations of the massless Dirac fermions have to be included. We show that they reduce the putative first-order character of the transition and can even render it continuous, depending on the number of Dirac fermions $N_f$. A non-perturbative functional renormalization group approach is employed to investigate the phase transition for a wide range of fermion numbers. For the first time we obtain the critical $N_f$, where the nature of the transition changes. Furthermore, it is shown that for large $N_f$ the change from the first to second order of the transition as a function of dimension occurs exactly in the physical 2+1 dimensions. We compute the critical exponents and predict sizable corrections to scaling for $N_f =2$.
We consider the finite-temperature phase diagram of the $S = 1/2$ frustrated Heisenberg bilayer. Although this two-dimensional system may show magnetic order only at zero temperature, we demonstrate the presence of a line of finite-temperature critical points related to the line of first-order transitions between the dimer-singlet and -triplet regimes. We show by high-precision quantum Monte Carlo simulations, which are sign-free in the fully frustrated limit, that this critical point is in the Ising universality class. At zero temperature, the continuous transition between the ordered bilayer and the dimer-singlet state terminates on the first-order line, giving a quantum critical end point, and we use tensor-network calculations to follow the first-order discontinuities in its vicinity.
Complete expressions of the thermal-expansion coefficient $alpha$ and the Gr{u}neisen parameter $Gamma$ are derived on the basis of the self-consistent renormalization (SCR) theory. By considering zero-point as well as thermal spin fluctuation under the stationary condition, the specific heat for each class of the magnetic quantum critical point (QCP) specified by the dynamical exponent $z=3$ (FM) and $z=2$ (AFM) and the spatial dimension ($d=3$ and $2$) is shown to be expressed as $C_{V}=C_a-C_b$, where $C_a$ is dominant at low temperatures, reproducing the past SCR criticality endorsed by the renormalization group theory. Starting from the explicit form of the entropy and using the Maxwell relation, $alpha=alpha_a+alpha_b$ (with $alpha_a$ and $alpha_b$ being related to $C_a$ and $C_b$, respectively) is derived, which is proven to be equivalent to $alpha$ derived from the free energy. The temperature-dependent coefficient found to exist in $alpha_b$, which is dominant at low temperatures, contributes to the crossover from the quantum-critical regime to the Curie-Weiss regime and even affects the quantum criticality at 2d AFM QCP. Based on these correctly calculated $C_{V}$ and $alpha$, Gr{u}neisen parameter $Gamma=Gamma_a+Gamma_b$ is derived, where $Gamma_a$ and $Gamma_b$ contain $alpha_a$ and $alpha_b$, respectively. The inverse susceptibility coupled to the volume $V$ in $Gamma_b$ gives rise to divergence of $Gamma$ at the QCP for each class even though characteristic energy scale of spin fluctuation $T_0$ is finite at the QCP, which gives a finite contribution in $Gamma_a=-frac{V}{T_0}left(frac{partial T_0}{partial V}right)_{T=0}$. General properties of $alpha$ and $Gamma$ including their signs as well as the relation to $T_0$ and the Kondo temperature in temperature-pressure phase diagrams of Ce- and Yb-based heavy electron systems are discussed.
The zero-bias tunneling resonance in quantum Hall bilayer systems is investigated via numerical simulations of the classical two dimensional XY model with a symmetry-breaking field. Disorder is included in the model, and is shown to nucleate strings of overturned spins proliferated through the system, with unpaired vortices and antivortices at their endpoints. This string glass state supports low energy excitations which lead to anomalously large dissipation in tunneling, as observed in experiment. The effect of an in-plane magnetic field is discussed.
We extend the Hertz-Millis theory of quantum phase transitions in itinerant electron systems to phases with broken discrete symmetry. Using a set of coupled flow equations derived within the functional renormalization group framework, we compute the second order phase transition line T_c(delta), with delta a non-thermal control parameter, near a quantum critical point. We analyze the interplay and relative importance of quantum and classical fluctuations at different energy scales, and we compare the Ginzburg temperature T_G to the transition temperature T_c, the latter being associated with a non-Gaussian fixed-point.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا