Do you want to publish a course? Click here

Derivation of Greens Function of Spin Calogero-Sutherland Model by Uglovs Method

98   0   0.0 ( 0 )
 Added by Ryota Nakai
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hole propagator of spin 1/2 Calogero-Sutherland model is derived using Uglovs method, which maps the exact eigenfunctions of the model, called Yangian Gelfand-Zetlin basis, to a limit of Macdonald polynomials (gl_2-Jack polynomials). To apply this mapping method to the calculation of 1-particle Greens function, we confirm that the sum of the field annihilation operator on Yangian Gelfand-Zetlin basis is transformed to the field annihilation operator on gl_2-Jack polynomials by the mapping. The resultant expression for hole propagator for finite-size system is written in terms of renormalized momenta and spin of quasi-holes and the expression in the thermodynamic limit coincides with the earlier result derived by another method. We also discuss the singularity of the spectral function for a specific coupling parameter where the hole propagator of spin Calogero-Sutherland model becomes equivalent to dynamical colour correlation function of SU(3) Haldane-Shastry model.



rate research

Read More

We show that the single quasi-particle Schrodinger equation for a certain form of one-body potential yields a stationary one soliton solution. The one-body potential is assumed to arise from the self- interacting charge distribution with the singular kernel of the Calogero-Sutherland model. The quasi-particle has negative or positive charge for negative or positive coupling constant of the interaction. The magnitude of the charge is unity only for the semion. It is also pointed out that for repulsive coupling, our equation is mathematically the same as the steady-state Smoluchowski equation of Dysons Coulomb gas model.
A one-dimensional quantum many-body system consisting of particles confined in a harmonic potential and subject to finite-range two-body and three-body inverse-square interactions is introduced. The range of the interactions is set by truncation beyond a number of neighbors and can be tuned to interpolate between the Calogero-Sutherland model and a system with nearest and next-nearest neighbors interactions discussed by Jain and Khare. The model also includes the Tonks-Girardeau gas describing impenetrable bosons as well as a novel extension with truncated interactions. While the ground state wavefunction takes a truncated Bijl-Jastrow form, collective modes of the system are found in terms of multivariable symmetric polynomials. We numerically compute the density profile, one-body reduced density matrix, and momentum distribution of the ground state as a function of the range $r$ and the interaction strength.
We solve perturbatively the quantum elliptic Calogero-Sutherland model in the regime in which the quotient between the real and imaginary semiperiods of the Weierstrass ${cal P}$ function is small
Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the previously known plaquette-singlet and antiferromagnetic states. Our conclusions are based on finite-size scaling of excited level crossings and order parameters. Together with previous results on candidate models for deconfined quantum criticality and spin liquid phases, our results point to a unified quantum phase diagram where the deconfined quantum-critical point separates a line of first-order transitions and a gapless spin liquid phase. The frustrated Shastry-Sutherland model is close to the critical point but slightly inside the spin liquid phase, while previously studied unfrustrated models cross the first-order line. We also argue that recent heat capacity measurements in SrCu$_2$(BO$_3$)$_2$ show evidence of the proposed spin liquid at pressures between 2.6 and 3 GPa.
We present an implementation of the steady state Keldysh approach in a Greens function multiple scattering scheme to calculate the non-equilibrium spin density. This density is used to obtain the spin transfer torque in junctions showing the magnetoresistance effect. We use our implementation to study the spin transfer torque in metallic Co/Cu/Co junctions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا