Do you want to publish a course? Click here

Electromechanical Effect in Complex Plasmas

175   0   0.0 ( 0 )
 Added by Sergey Zhdanov K.
 Publication date 2008
  fields Physics
and research's language is English
 Authors S. Zhdanov




Ask ChatGPT about the research

Experimental results on an auto-oscillatory pattern observed in a complex plasma are presented. The experiments are performed with an argon plasma which is produced under microgravity conditions using a capacitively-coupled rf discharge at low power and gas pressure. The observed intense wave activity in the complex plasma cloud correlates well with the low-frequency modulation of the discharge voltage and current and is initiated by periodic void contractions. Particle migrations forced by the waves are of long-range repulsive and attractive character.



rate research

Read More

We study the Hall effect in diluted plasmas within the two-fluids theory. Composed by two distinct species with opposite charge, such as electrons and ions in fully ionised hydrogen, the plasma is driven by an electric field through a channel in the presence of a transversal magnetic field. As a consequence, a separation of charge is induced producing an electric potential difference. We have found a general relation for the Hall voltage as function of the mass and viscosity ratios, which converges to the usual expression in the limit of solid matter, i.e. when ions are much more massive than electrons. All the simulations have been performed using a three-dimensional Lattice-Boltzmann model, which has been also validated for some relevant applications. Finally, we discuss the importance of our findings in the light of recent developments in plasma physics, in particular in magnetic reconnection.
Spontaneous symmetry breaking is an essential feature of modern science. We demonstrate that it also plays an important role in the physics of complex plasmas. Complex plasmas can serve as a powerful tool for observing and studying discrete types of symmetry and disordering at the kinetic level that numerous many-body systems exhibit.
An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles with the surrounding plasma for diagnostic purposes. Local electric fields can be determined from the behaviour of particles in the plasma, e.g. particles may serve as electrostatic probes. Since in many cases of applications in plasma technology it is of great interest to describe the electric field conditions in front of floating or biased surfaces, the confinement and behaviour of test particles is studied in front of floating walls inserted into a plasma as well as in front of additionally biased surfaces. For the latter case, the behaviour of particles in front of an adaptive electrode, which allows for an efficient confinement and manipulation of the grains, has been experimentally studied in dependence on the discharge parameters and on different bias conditions of the electrode. The effect of the partially biased surface (dc, rf) on the charged micro-particles has been investigated by particle falling experiments. In addition to the experiments we also investigate the particle behaviour numerically by molecular dynamics, in combination with a fluid and particle-in-cell description of the plasma.
84 - V. N. Naumkin 2016
We propose a novel method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a cloud and provides a reasonably good accuracy. Based on this method, we investigate the particle density in a dust cloud realized in gas discharge plasma in the PK-3 Plus setup onboard the International Space Station. We find that the treated dust clouds are both anisotropic and inhomogeneous. One can isolate two regimes, in which a stationary dust cloud can be observed. At low pressures, the particle density decreases monotonically with the increase of the distance from the discharge center; at higher pressures, the density distribution has a shallow minimum. Regardless of the regime, we detect a cusp of the distribution at the void boundary and a slowly varying density at larger distances (in the foot region). A theoretical interpretation of obtained results is developed that leads to reasonable estimates of the densities for both the cusp and foot. The modified ionization equation of state, which allows for violation of the local quasineutrality in the cusp region, predicts the spatial distributions of ion and electron densities to be measured in future experiments.
88 - A. Pikalev 2020
We demonstrate experimentally that the void in capacitively-coupled RF complex plasmas can exist in two qualitative different regimes. The bright void is characterized by bright plasma emission associated with the void, whereas the dim void possesses no detectable emission feature. The transition from the dim to the bright regime occurs with an increase of the discharge power and has a discontinuous character. The discontinuity is manifested by a kink in the void size power dependencies. We reproduce the bright void (mechanically stabilized due to the balance of ion drag and electrostatic forces) by a simplified time-averaged 1D fluid model. To reproduce the dim void, we artificially include the radial ion diffusion into the continuity equation for ions, which allows to mechanically stabilize the void boundary due to very weak electrostatic forces. The electric field at the void boundary occurs to be so small that it, in accordance with the experimental observation, causes no void-related emission feature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا