Do you want to publish a course? Click here

Spin-squared Hamiltonian of next-to-leading order gravitational interaction

352   0   0.0 ( 0 )
 Added by Jan Steinhoff
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The static, i.e., linear momentum independent, part of the next-to-leading order (NLO) gravitational spin(1)-spin(1) interaction Hamiltonian within the post-Newtonian (PN) approximation is calculated from a 3-dim. covariant ansatz for the Hamilton constraint. All coefficients in this ansatz can be uniquely fixed for black holes. The resulting Hamiltonian fits into the canonical formalism of Arnowitt, Deser, and Misner (ADM) and is given in their transverse-traceless (ADMTT) gauge. This completes the recent result for the momentum dependent part of the NLO spin(1)-spin(1) ADM Hamiltonian for binary black holes (BBH). Thus, all PN NLO effects up to quadratic order in spin for BBH are now given in Hamiltonian form in the ADMTT gauge. The equations of motion resulting from this Hamiltonian are an important step toward more accurate calculations of templates for gravitational waves.



rate research

Read More

Based on recent developments by the authors a next-to-leading order spin(1)-spin(2) Hamiltonian is derived for the first time. The result is obtained within the canonical formalism of Arnowitt, Deser, and Misner (ADM) utilizing their generalized isotropic coordinates. A comparison with other methods is given.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.
Using the Effective Field Theory approach together with the Boundary-to-Bound map, we compute the next-to-leading order (NLO) Post-Minkowskian (PM) tidal effects in the conservative dynamics of compact binary systems. We derive the mass and current quadrupole and, for the first time, octupole corrections to the binding energy for circular orbits at ${cal O}(G^3)$. Our results are consistent with the test-body limit as well as the existent Post-Newtonian literature. We also reconstruct a Hamiltonian incorporating tidal effects to NLO in the PM expansion and find complete agreement with the recent derivation of its quadrupolar part using the classical limit of scattering amplitudes.
We develop further an approach to computing energy-energy correlations (EEC) directly from finite correlation functions. In this way, one completely avoids infrared divergences. In maximally supersymmetric Yang-Mills theory ($mathcal{N}=4$ sYM), we derive a new, extremely simple formula relating the EEC to a triple discontinuity of a four-point correlation function. We use this formula to compute the EEC in $mathcal{N}=4$ sYM at next-to-next-to-leading order in perturbation theory. Our result is given by a two-fold integral representation that is straightforwardly evaluated numerically. We find that some of the integration kernels are equivalent to those appearing in sunrise Feynman integrals, which evaluate to elliptic functions. Finally, we use the new formula to provide the expansion of the EEC in the back-to-back and collinear limits.
We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details necessary to perform the QCD scale evolution and cross section calculation in Mellin moment space. We demonstrate how the description of the data and the theoretical uncertainties are improved when next-to-next-to-leading order QCD corrections are included.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا