An approximation algorithm for approximation rank


Abstract in English

One of the strongest techniques available for showing lower bounds on quantum communication complexity is the logarithm of the approximation rank of the communication matrix--the minimum rank of a matrix which is entrywise close to the communication matrix. This technique has two main drawbacks: it is difficult to compute, and it is not known to lower bound quantum communication complexity with entanglement. Linial and Shraibman recently introduced a norm, called gamma_2^{alpha}, to quantum communication complexity, showing that it can be used to lower bound communication with entanglement. Here the parameter alpha is a measure of approximation which is related to the allowable error probability of the protocol. This bound can be written as a semidefinite program and gives bounds at least as large as many techniques in the literature, although it is smaller than the corresponding alpha-approximation rank, rk_alpha. We show that in fact log gamma_2^{alpha}(A)$ and log rk_{alpha}(A)$ agree up to small factors. As corollaries we obtain a constant factor polynomial time approximation algorithm to the logarithm of approximate rank, and that the logarithm of approximation rank is a lower bound for quantum communication complexity with entanglement.

Download