Do you want to publish a course? Click here

Properties of Galaxies Hosting X-ray Selected Active Galactic Nuclei in the Cl1604 Supercluster at z=0.9

636   0   0.0 ( 0 )
 Added by Dale D. Kocevski
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

To investigate the role of feedback from Active Galactic Nuclei (AGN) in driving the evolution of their host galaxies, we have carried out a study of the environments and optical properties of galaxies harboring X-ray luminous AGN in the Cl1604 supercluster at z~0.9. Making use of Chandra, HST/ACS and Keck/DEIMOS observations, we examine the integrated colors, morphologies and spectral properties of nine moderate-luminosity (L_x ~ 10^43 erg s^-1) type 2 Seyferts detected in the Cl1604 complex. We find that the AGN are predominantly hosted by luminous spheroids and/or bulge dominated galaxies which have colors that place them in the valley between the blue cloud and red sequence in color-magnitude space, consistent with predictions that AGN hosts should constitute a transition population. Half of the hosts have bluer overall colors as a result of blue resolved cores in otherwise red spheroids and a majority show signs of recent or pending interactions. We also find a substantial number exhibit strong Balmer absorption features indicative of post-starburst galaxies, despite the fact that we detect narrow [OII] emission lines in all of the host spectra. If the [OII] lines are due in part to AGN emission, as we suspect, then this result implies that a significant fraction of these galaxies (44%) have experienced an enhanced level of star formation within the last ~1 Gyr which was rapidly suppressed. Overall we find that the properties of the nine host galaxies are generally consistent with a scenario in which recent interactions have triggered both increased levels of nuclear activity and an enhancement of centrally concentrated star formation, followed by a rapid truncation of the latter, possibly as a result of feedback from the AGN itself. [Abridged]



rate research

Read More

We present the results of Chandra observations of the Cl1604 supercluster at z~0.9. The system is the largest structure mapped at redshifts approaching unity, containing at least eight spectroscopically confirmed galaxy clusters and groups. Using two 50-ksec ACIS-I pointings we examine both the X-ray point source population and the diffuse emission from individual clusters in the system. We find a 2.5sigma excess of point sources detected in the hard band (2-10 keV) relative to the number of sources found in blank fields observed by Chandra. No such excess is observed in the soft band (0.5-2 keV). The hard-band source density is 1.47 times greater than that of a blank field, in agreement with the previously reported correlation between overdensity amplitude and cluster redshift. Using a maximum likelihood technique we have matched 112 of the 161 detected X-ray point sources to optical counterparts and found 15 sources that are associated with the supercluster. All 15 sources have rest-frame luminosities consistent with emission from active galactic nuclei (AGN). We find that the supercluster AGN largely avoid the densest regions of the system and are instead distributed on the outskirts of massive clusters or within poorer clusters and groups. We have also detected diffuse emission from two of the eight clusters and groups in the system, clusters Cl1604+4304 and Cl1604+4314. The systems have bolometric luminosities of 1.43x10^44 and 8.20x10^43 h70^-2 erg s^-1 and gas temperatures of 3.50 (+1.82-1.08) and 1.64 (+0.65-0.45) keV, respectively. Using updated velocity dispersions, we compare the properties of these systems to the cluster scaling relations followed by other X-ray and optically selected galaxy clusters at high redshift.
79 - N.L. Homeier 2006
We analyse the cluster color-magnitude relation (CMR) for early-type galaxies in two of the richer clusters in the z ~ 0.9 supercluster system to derive average ages and formation redshifts for the early-type galaxy population. Both clusters were observed with the Advanced Camera for Surveys aboard the {it Hubble Space Telescope} through the F606W and F814W filters, which brackets the rest-frame 4000 AA break at the cluster redshifts of zsim 0.9. We fit the zeropoint and slope of the red cluster sequence, and model the scatter about this relation to estimate average galaxy ages and formation redshifts. We find intrinsic scatters of 0.038-0.053 mag in ($V_{606}-I_{814}$) for the E and E+S0 populations, corresponding to average ages of 3.5-3.7 Gyr and formation redshifts z_{f}=2.4-2.6. We find at least one significant difference between the Cl1604+4304 and Cl1604+4321 early-type CMRs. Cl1604+4321, the less X-ray luminous and massive of the two, lacks bright L^* ellipticals. We combine the galaxy samples to fit a composite CMR down to 0.15L^*, and find that the slope of the combined cluster CMR is significantly steeper than for RX J0152.7-1357 but consistent with MS 1054-03, both at similar redshift. The slope of the Cl1604 CMR at the bright end (L > 0.5L^*) is flatter and consistent with the CMR slopes found for other high redshift clusters. We find evidence for increasing scatter with increasing magnitude along the early-type CMR, consistent with a downsizing scenario, indicating younger mean ages with decreasing galaxy mass.
Merger simulations predict that tidally induced gas inflows can trigger kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments. Previously with the Very Large Array, we have confirmed four dAGN with redshifts between $0.04 < z < 0.22$ and projected separations between 4.3 and 9.2 kpc in the SDSS Stripe 82 field. Here, we present $Chandra$ X-ray observations that spatially resolve these dAGN and compare their multi-wavelength properties to those of single AGN from the literature. We detect X-ray emission from six of the individual merger components and obtain upper limits for the remaining two. Combined with previous radio and optical observations, we find that our dAGN have properties similar to nearby low-luminosity AGN, and they agree well with the black hole fundamental plane relation. There are three AGN-dominated X-ray sources, whose X-ray hardness-ratio derived column densities show that two are unobscured and one is obscured. The low obscured fraction suggests these dAGN are no more obscured than single AGN, in contrast to the predictions from simulations. These three sources show an apparent X-ray deficit compared to their mid-infrared continuum and optical [OIII] line luminosities, suggesting higher levels of obscuration, in tension with the hardness-ratio derived column densities. Enhanced mid-infrared and [OIII] luminosities from star formation may explain this deficit. There is ambiguity in the level of obscuration for the remaining five components since their hardness ratios may be affected by non-nuclear X-ray emissions, or are undetected altogether. They require further observations to be fully characterized.
We present a measurement of the fraction of cluster galaxies hosting X-ray bright Active Galactic Nuclei (AGN) as a function of clustercentric distance scaled in units of $r_{500}$. Our analysis employs high quality Chandra X-ray and Subaru optical imaging for 42 massive X-ray selected galaxy cluster fields spanning the redshift range of $0.2 < z < 0.7$. In total, our study involves 176 AGN with bright ($R <23$) optical counterparts above a $0.5-8.0$ keV flux limit of $10^{-14} rm{erg} rm{cm}^{-2} rm{s}^{-1}$. When excluding central dominant galaxies from the calculation, we measure a cluster-galaxy AGN fraction in the central regions of the clusters that is $sim 3 $ times lower that the field value. This fraction increases with clustercentric distance before becoming consistent with the field at $sim 2.5 r_{500}$. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies, both of which are also suppressed near cluster centers to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas.
We report the discovery of a compact supercluster structure at z=0.9. The structure comprises three optically-selected clusters, all of which are detected in X-rays and spectroscopically confirmed to lie at the same redshift. The Chandra X-ray temperatures imply individual masses of ~5x10^14 Msun. The X-ray masses are consistent with those inferred from optical--X-ray scaling relations established at lower redshift. A strongly-lensed z~4 Lyman break galaxy behind one of the clusters allows a strong-lensing mass to be estimated for this cluster, which is in good agreement with the X-ray measurement. Optical spectroscopy of this cluster gives a dynamical mass in good agreement with the other independent mass estimates. The three components of the RCS2319+00 supercluster are separated from their nearest neighbor by a mere <3 Mpc in the plane of the sky and likely <10 Mpc along the line-of-sight, and we interpret this structure as the high-redshift antecedent of massive (~10^15 Msun) z~0.5 clusters such as MS0451.5-0305.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا