Do you want to publish a course? Click here

Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures by hard X-ray photoelectron spectroscopy

337   0   0.0 ( 0 )
 Added by M. Sing
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The conducting interface of LaAlO$_3$/SrTiO$_3$ heterostructures has been studied by hard X-ray photoelectron spectroscopy. From the Ti~2$p$ signal and its angle-dependence we derive that the thickness of the electron gas is much smaller than the probing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO$_3$ overlayers. Our results point to an electronic reconstruction in the LaAlO$_3$ overlayer as the driving mechanism for the conducting interface and corroborate the recent interpretation of the superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless type.



rate research

Read More

Here we report about the interface reconstruction in the recently discovered superconducting artificial superlattices based on insulating CaCuO2 and SrTiO3 blocks. Hard x-ray photoelectron spectroscopy shows that the valence bands alignment prevents any electronic reconstruction by direct charge transfer between the two blocks. We demonstrate that the electrostatic built-in potential is suppressed by oxygen redistribution in the alkaline earth interface planes. By using highly oxidizing growth conditions, the oxygen coordination in the reconstructed interfaces may be increased, resulting in the hole doping of the cuprate block and thus in the appearance of superconductivity.
Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.
135 - X. Wang , W.M Lu , A. Annadi 2011
Magnetoresistance (MR) anisotropy in LaAlO3/SrTiO3 (LAO/STO) interfaces is compared between samples prepared in high oxygen partial pressure (PO2) of 10-4 mbar exhibiting quasi-two-dimensional (quasi-2D) electron gas and low PO2 of 10-6 mbar exhibiting 3D conductivity. While MR of an order of magnitude larger was observed in low PO2 samples compared to those of high PO2 samples, large MR anisotropies were observed in both cases. The MR with the out-of-plane field is always larger compared to the MR with in-plane field suggesting lower dissipation of electrons from interface versus defect scattering. The quasi-2D interfaces show a negative MR at low temperatures while the 3D interfaces show positive MR for all temperatures. Furthermore, the angle relationship of MR anisotropy for these two different cases and temperature dependence of in-plane MR are also presented. Our study demonstrates that MR can be used to distinguish the dimensionality of the charge transport and various (defect, magnetic center, and interface boundary) scattering processes in this system.
155 - C. Barone , F. Romeo , S. Pagano 2013
The voltage-spectral density SV(f) of the 2-dimensional electron gas formed at the interface of LaAlO3 /SrTiO3 has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.
A combined experimental and theoretical investigation of the electronic structure of the archetypal oxide heterointerface system LaAlO3 on SrTiO3 is presented. High-resolution, hard x-ray photoemission is used to uncover the occupation of Ti 3d states and the relative energetic alignment - and hence internal electric fields - within the LaAlO3 layer. Firstly, the Ti 2p core level spectra clearly show occupation of Ti 3d states already for two unit cells of LaAlO3. Secondly, the LaAlO3 core levels were seen to shift to lower binding energy as the LaAlO3 overlayer thickness, n, was increased - agreeing with the expectations from the canonical electron transfer model for the emergence of conductivity at the interface. However, not only is the energy offset of only 300meV between n=2 (insulating interface) and n=6 (metallic interface) an order of magnitude smaller than the simple expectation, but it is also clearly not the sum of a series of unit-cell by unit-cell shifts within the LaAlO3 block. Both of these facts argue against the simple charge-transfer picture involving a cumulative shift of the LaAlO3 valence bands above the SrTiO3 conduction bands, resulting in charge transfer only for n>3. Turning to the theoretical data, our density functional simulations show that the presence of oxygen vacancies at the LaAlO3 surface at the 25% level reverses the direction of the internal field in the LaAlO3. Therefore, taking the experimental and theoretical results together, a consistent picture emerges for real-life samples in which nature does not wait until n=4 and already for n=2, mechanisms other than internal-electric-field-driven electron transfer from idealized LaAlO3 to near-interfacial states in the SrTiO3 substrate are active in heading off the incipient polarization catastrophe that drives the physics in these systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا