No Arabic abstract
The depinning current Ic versus applied magnetic field B close to the transition temperature Tc of Nb thin films with randomly diluted triangular arrays of antidots is investigated. % Our experiments confirm essential features in Ic(B) as predicted by Reichhardt and Olson Reichhardt [Phys.Rev. B 76, 094512 (2007)]. % We show that, by introducing disorder into periodic pinning arrays, Ic can be enhanced. % In particular, for arrays with fixed density n_p of antidots, an increase in dilution Pd induces an increase in Ic and decrease of the flux-flow voltage for B>Bp=n_p Phi_0.
We study experimentally the critical depinning current Ic versus applied magnetic field B in Nb thin films which contain 2D arrays of circular antidots placed on the nodes of quasiperiodic (QP) fivefold Penrose lattices. Close to the transition temperature Tc we observe matching of the vortex lattice with the QP pinning array, confirming essential features in the Ic(B) patterns as predicted by Misko et al. [Phys. Rev. Lett, vol.95, 177007 (2005)]. We find a significant enhancement in Ic(B) for QP pinning arrays in comparison to Ic in samples with randomly distributed antidots or no antidots.
We present transport measurement results on superconducting Nb films with diluted triangular arrays (honeycomb and kagom{e}) of holes. The patterned films have large disk-shaped interstitial regions even when the edge-to-edge separations between nearest neighboring holes are comparable to the coherence length. Changes in the field interval of two consecutive minima in the field dependent resistance $R(H)$ curves are observed. In the low field region, fine structures in the $R(H)$ and $T_c(H)$ curves are identified in both arrays. Comparison of experimental data with calculation results shows that these structures observed in honeycomb and kagom{e} hole arrays resemble those in wire networks with triangular and $T_3$ symmetries, respectively. Our findings suggest that even in these specified periodic hole arrays with very large interstitial regions, the low field fine structures are determined by the connectivity of the arrays
We study magnetic flux interacting with arrays of pinning sites (APS) placed on vertices of hyperbolic tesselations (HT). We show that, due to the gradient in the density of pinning sites, HT APS are capable of trapping vortices for a broad range of applied magnetic fluxes. Thus, the penetration of magnetic field in HT APS is essentially different from the usual scenario predicted by the Bean model. We demonstrate that, due to the enhanced asymmetry of the surface barrier for vortex entry and exit, this HT APS could be used as a capacitor to store magnetic flux.
Nb films containing extended arrays of holes with 45-nm diameter and 100-nm spacing have been fabricated using anodized aluminum oxide (AAO) as substrate. Pronounced matching effects in the magnetization and Little-Parks oscillations of the superconducting critical temperature have been observed in fields up to 9 kOe. Flux pinning in the patterned samples is enhanced by two orders of magnitude as compared to unpatterned reference samples in applied fields exceeding 5 kOe. Matching effects are a dominant contribution to vortex pinning at temperatures as low as 4.2 K due to the extremely small spacing of the holes.
We study theoretically the effects of heating on the magnetic flux moving in superconductors with a periodic array of pinning sites (PAPS). The voltage-current characteristic (VI-curve) of superconductors with a PAPS includes a region with negative differential resistivity (NDR) of S-type (i.e., S-shaped VI-curve), while the heating of the superconductor by moving flux lines produces NDR of N-type (i.e., with an N-shaped VI-curve). We analyze the instability of the uniform flux flow corresponding to different parts of the VI-curve with NDR. Especially, we focus on the appearance of the filamentary instability that corresponds to an S-type NDR, which is extremely unusual for superconductors. We argue that the simultaneous existence of NDR of both N- and S-type gives rise to the appearance of self-organized two-dimensional dynamical structures in the flux flow mode. We study the effect of the pinning site positional disorder on the NDR and show that moderate disorder does not change the predicted results, while strong disorder completely suppresses the S-type NDR.