40Ca+40,48Ca,46Ti reactions at 25 MeV/A have been studied using the 4p CHIMERA detector. An isospin effect on the competition between incomplete fusion and dissipative binary reaction mechanisms has been observed. The probability of producing a compound system is observed to be lower in the case of N=Z colliding systems as compared to the case of reactions induced on the more neutron rich 48Ca target. Predictions based on CoMD-II calculations show that the competition between fusion-like and dissipative reactions, for the selected centrality, can strongly constraint the parameterization of symmetry energy and its density dependence in the nuclear equation of state.