Energy efficient real-time task scheduling attracted a lot of attention in the past decade. Most of the time, deterministic execution lengths for tasks were considered, but this model fits less and less with the reality, especially with the increasing number of multimedia applications. Its why a lot of research is starting to consider stochastic models, where execution times are only known stochastically. However, authors consider that they have a pretty much precise knowledge about the properties of the system, especially regarding to the worst case execution time (or worst case execution cycles, WCEC). In this work, we try to relax this hypothesis, and assume that the WCEC can vary. We propose miscellaneous methods to react to such a situation, and give many simulation results attesting that with a small effort, we can provide very good results, allowing to keep a low deadline miss rate as well as an energy consumption similar to clairvoyant algorithms.