Do you want to publish a course? Click here

Dynamical Constraints on The Masses of the Nuclear Star Cluster and Black Hole in the Late-Type Spiral Galaxy NGC 3621

432   0   0.0 ( 0 )
 Added by A. J. Barth
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 3621 is a late-type (Sd) spiral galaxy with an active nucleus, previously detected through mid-infrared [Ne V] line emission. Archival Hubble Space Telescope (HST) images reveal that the galaxy contains a bright and compact nuclear star cluster. We present a new high-resolution optical spectrum of this nuclear cluster, obtained with the ESI Spectrograph at the Keck Observatory. The nucleus has a Seyfert 2 emission-line spectrum at optical wavelengths, supporting the hypothesis that a black hole is present. The line-of-sight stellar velocity dispersion of the cluster is sigma=43+/-3 km/s, one of the largest dispersions measured for any nuclear cluster in a late-type spiral galaxy. Combining this measurement with structural parameters measured from archival HST images, we carry out dynamical modeling based on the Jeans equation for a spherical star cluster containing a central point mass. The maximum black hole mass consistent with the measured stellar velocity dispersion is 3*10^6 solar masses. If the black hole mass is small compared with the clusters stellar mass, then the dynamical models imply a total stellar mass of ~1*10^7 solar masses, which is consistent with rough estimates of the stellar mass based on photometric measurements from HST images. From structural decomposition of 2MASS images, we find no clear evidence for a bulge in NGC 3621; the galaxy contains at most a very faint and inconspicuous pseudobulge component (M_K>-17.6 mag). NGC 3621 provides one of the best demonstrations that very late-type spirals can host both active nuclei and nuclear star clusters, and that low-mass black holes can occur in disk galaxies even in the absence of a substantial bulge.



rate research

Read More

We improve the dynamical black hole (BH) mass estimates in three nearby low-mass early-type galaxies--NGC 205, NGC 5102, and NGC 5206. We use new hst/STIS spectroscopy to fit the star formation histories of the nuclei in these galaxies, and use these measurements to create local color--mass-to-light ratio (ml) relations. We then create new mass models from hst~imaging and combined with adaptive optics kinematics, we use Jeans dynamical models to constrain their BH masses. The masses of the central BHs in NGC 5102 and NGC 5206 are both below one million solar masses and are consistent with our previous estimates, $9.12_{-1.53}^{+1.84}times10^5$Msun~and $6.31_{-2.74}^{+1.06}times10^5$Msun~(3$sigma$ errors), respectively. However, for NGC 205, the improved models suggest the presence of a BH for the first time, with a best-fit mass of $6.8_{-6.7}^{+95.6}times10^3$Msun~(3$sigma$ errors). This is the least massive central BH mass in a galaxy detected using any method. We discuss the possible systematic errors of this measurement in detail. Using this BH mass, the existing upper limits of both X-ray, and radio emissions in the nucleus of NGC 205 suggest an accretion rate $lesssim$$10^{-5}$ of the Eddington rate. We also discuss the color--mleff~relations in our nuclei and find that the slopes of these vary significantly between nuclei. Nuclei with significant young stellar populations have steeper color--mleff~relations than some previously published galaxy color--mleff~relations.
191 - Paul B. Eskridge 2007
Ultraviolet, optical and near infrared images of the nearby (D ~ 5.5 Mpc) SBm galaxy NGC 1311, obtained with the Hubble Space Telescope, reveal a small population of 13 candidate star clusters. We identify candidate star clusters based on a combination of their luminosity, extent and spectral energy distribution. The masses of the cluster candidates range from ~1000 up to ~100000 Solar masses, and show a strong positive trend of larger mass with increasing with cluster age. Such a trend follows from the fading and dissolution of old, low-mass clusters, and the lack of any young super star clusters of the sort often formed in strong starbursts. The cluster age distribution is consistent with a bursting mode of cluster formation, with active episodes of age ~10 Myr, ~100 Myr and ~1 Gyr. The ranges of age and mass we probe are consistent with those of the star clusters found in quiescent Local Group dwarf galaxies.
We present our mass estimate of the central black hole in the isolated spiral galaxy NGC 4414. Using natural guide star adaptive optics assisted observations with the Gemini Near-Infrared Integral Field Spectrometer (NIFS) and the natural seeing Gemini Multi-Object Spectrographs-North (GMOS), we derived two-dimensional stellar kinematic maps of NGC 4414 covering the central 1.5 arcsec and 10 arcsec, respectively, at a NIFS spatial resolution of 0.13 arcsec. The kinematic maps reveal a regular rotation pattern and a central velocity dispersion dip down to around 105 km/s. We constructed dynamical methods using two different methods: Jeans anisotropic dynamical modeling and axisymmetric Schwarzschild modeling. Both modeling methods give consistent results, but we cannot constrain the lower mass limit and only measure an upper limit for the black hole mass of Mbh= 1.56 x 10^6 Msun(at 3 sigma level) which is at least 1 sigma below the recent Mbh-sigma_e relations. Further tests with dark matter, mass-to-light ratio variation and different light models confirm that our results are not dominated by uncertainties. The derived upper limit mass is not only below the Mbh-sigma_e relation, but is also five times lower than the lower limit black hole mass anticipated from the resolution limit of the sphere of influence. This proves that via high quality integral field data we are now able to push black hole measurements down to at least five times less than the resolution limit.
The Galactic Center is an excellent laboratory for studying phenomena and physical processes that may be occurring in many other galactic nuclei. The Center of our Milky Way is by far the closest galactic nucleus, and observations with exquisite resolution and sensitivity cover 18 orders of magnitude in energy of electromagnetic radiation. Theoretical simulations have become increasingly more powerful in explaining these measurements. This review summarizes the recent progress in observational and theoretical work on the central parsec, with a strong emphasis on the current empirical evidence for a central massive black hole and on the processes in the surrounding dense nuclear star cluster. We present the current evidence, from the analysis of the orbits of more than two dozen stars and from the measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 times 1e6 Msun, beyond any reasonable doubt. We report what is known about the structure and evolution of the dense nuclear star cluster surrounding this black hole, including the astounding fact that stars have been forming in the vicinity of Sgr A* recently, apparently with a top-heavy stellar mass function. We discuss a dense concentration of fainter stars centered in the immediate vicinity of the massive black hole, three of which have orbital peri-bothroi of less than one light day. This S-star cluster appears to consist mainly of young early-type stars, in contrast to the predicted properties of an equilibrium stellar cusp around a black hole. This constitutes a remarkable and presently not fully understood paradox of youth. We also summarize what is known about the emission properties of the accreting gas onto Sgr A* and how this emission is beginning to delineate the physical properties in the hot accretion zone around the event horizon.
Ground-based surveys have mapped the stellar outskirts of Local Group galaxies in unprecedented detail, but extending this work to other galaxies is necessary to overcome stochastic variations in evolutionary history and provide more stringent constraints on cosmological galaxy formation models. As part of our continuing program of ultra-deep imagery of galaxies beyond the Local Group, we present a wide-field analysis of the isolated late-type spiral NGC2403 using data obtained with Suprime-Cam on Subaru. The survey reaches a maximum projected radius of 30 kpc or deprojected radius of R_dp~60 kpc. The colour-magnitude diagram reaches 1.5 mag below the tip of the metal-poor red giant branch (RGB) at a completeness rate > 50% for R_dp >12 kpc. Using the combination of diffuse light photometry and resolved star counts, we are able to trace the radial surface brightness (SB) profile over a much larger range of radii and surface brightness than is possible with either technique alone. The exponential disc as traced by RGB stars dominates the SB profile out to >8 disc scale-lengths, or R_dp~18 kpc, and reaches a V-band SB of 29 mag per sq. arcsec. Beyond this radius, we find evidence for an extended structural component with a significantly flatter SB profile than the inner disc and which we trace to R_dp~40 kpc and ~32 mag per sq. arcsec. This component can be fit with a power-law index of ~3, has an axial ratio consistent with that of the inner disc and has a V-band luminosity of 1-7% that of the whole galaxy. At R_dp~20 - 30 kpc, we estimate a peak metallicity [M/H]= -1.0+/-0.3. Although the extant data are unable to discriminate between stellar halo or thick disc interpretations of this component, our results support the notion that faint, extended stellar structures are a common feature of all disc galaxies, even isolated, low-mass systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا