Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [ I(mu) = int_X int_X d(x,y) dmu(x) dmu(y), ] and set $M(X) = sup I(mu)$, where $mu$ ranges over the collection of signed measures in $mathcal{M}(X)$ of total mass 1. This paper, with an earlier and a subsequent paper [Peter Nickolas and Reinhard Wolf, Distance geometry in quasihypermetric spaces. I and III], investigates the geometric constant $M(X)$ and its relationship to the metric properties of $X$ and the functional-analytic properties of a certain subspace of $mathcal{M}(X)$ when equipped with a natural semi-inner product. Using the work of the earlier paper, this paper explores measures which attain the supremum defining $M(X)$, sequences of measures which approximate the supremum when the supremum is not attained and conditions implying or equivalent to the finiteness of $M(X)$.