Do you want to publish a course? Click here

A spectroscopic confirmation of the Bootes II dwarf spheroidal

153   0   0.0 ( 0 )
 Added by Andreas Koch
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new suite of photometric and spectroscopic data for the faint Bootes II dwarf spheroidal galaxy candidate. Our deep photometry, obtained with the INT/WFC, suggests a distance of 46 kpc and a small half-light radius of 4.0 arcmin (56 pc), consistent with previous estimates. Follow-up spectroscopy obtained with the Gemini/GMOS instrument yielded radial velocities and metallicities. While the majority of our targets covers a broad range in velocities and metallicities, we find five stars which share very similar velocities and metallicities and which are all compatible with the colors and magnitudes of the galaxys likely red giant branch. We interpret these as a spectroscopic detection of the Bootes II system. These stars have a mean velocity of -117 km/s, a velocity dispersion of (10.5+-7.4) km/s and a mean [Fe/H] of -1.79 dex, with a dispersion of 0.14 dex. At this metallicity, Boo II is not consistent with the stellar-mass-metallicity relation for the more luminous dwarf galaxies. Coupled with our distance estimate, its high negative systemic velocity rules out any physical connection with its projected neighbor, the Bootes I dwarf spheroidal, which has a velocity of ~+100 km/s. The velocity and distance of Bootes II coincide with those of the leading arm of Sagittarius, which passes through this region of the sky, so that it is possible that Bootes II may be a stellar system associated with the Sagittarius stream. Finally, we note that the properties of Bootes II are consistent with being the surviving remnant of a previously larger and more luminous dSph galaxy.



rate research

Read More

The Fornax dwarf spheroidal galaxy has an anomalous number of globular clusters, five, for its stellar mass. There is a longstanding debate about a potential sixth globular cluster (Fornax~6) that has recently been `rediscovered in DECam imaging. We present new Magellan/M2FS spectroscopy of the Fornax~6 cluster and Fornax dSph. Combined with literature data we identify $sim15-17$ members of the Fornax~6 cluster that this overdensity is indeed a star cluster and associated with the Fornax dSph. The cluster is significantly more metal-rich (mean metallicity of $overline{rm [Fe/H]}=-0.71pm0.05$) than the other five Fornax globular clusters ($-2.5<[Fe/H]<-1.4$) and more metal-rich than the bulk of Fornax. We measure a velocity dispersion of $5.6_{-1.6}^{+2.0},{rm km , s^{-1}}$ corresponding to anomalously high mass-to-light of 15$<$M/L$<$258 at 90% confidence when calculated assuming equilibrium. Two stars inflate this dispersion and may be either Fornax field stars or as yet unresolved binary stars. Alternatively the Fornax~6 cluster may be undergoing tidal disruption. Based on its metal-rich nature, the Fornax 6 cluster is likely younger than the other Fornax clusters, with an estimated age of $sim2$ Gyr when compared to stellar isochrones. The chemodynamics and star formation history of Fornax shows imprints of major events such as infall into the Milky Way, multiple pericenter passages, star formation bursts, and/or potential mergers or interactions. Any of these events may have triggered the formation of the Fornax~6 cluster.
151 - M. Fellhauer 2008
We investigate a wide range of possible evolutionary histories for the recently discovered Bootes dwarf spheroidal galaxy, a Milky Way satellite. By means of N-body simulations we follow the evolution of possible progenitor galaxies of Bootes for a variety of orbits in the gravitational potential of the Milky Way. The progenitors considered cover the range from dark-matter-free star clusters to massive, dark-matter dominated outcomes of cosmological simulations. For each type of progenitor and orbit we compare the observable properties of the remnant after 10 Gyr with those of Bootes observed today. Our study suggests that the progenitor of Bootes must have been, and remains now, dark matter dominated. In general our models are unable to reproduce the observed high velocity dispersion in Bootes without dark matter. Our models do not support time-dependent tidal effects as a mechanism able to inflate significantly the internal velocity dispersion. As none of our initially spherical models is able to reproduce the elongation of Bootes, our results suggest that the progenitor of Bootes may have had some intrinsic flattening. Although the focus of the present paper is the Bootes dwarf spheroidal, these models may be of general relevance to understanding the structure, stability and dark matter content of all dwarf spheroidal galaxies.
We use Keck/DEIMOS spectroscopy to measure the first velocity and metallicity of a dwarf spheroidal (dSph) galaxy beyond the Local Group using resolved stars. Our target, d0944+71, is a faint dSph found in the halo of the massive spiral galaxy M81 by Chiboucas et al. We coadd the spectra of 27 individual stars and measure a heliocentric radial velocity of $-38pm10$~km/s. This velocity is consistent with d0944+71 being gravitationally bound to M81. We coadd the spectra of the 23 stars that are consistent with being red giant branch stars and measure an overall metallicity of ${rm [Fe/H]}=-1.3 pm 0.3$ based on the calcium triplet lines. This metallicity is consistent with d0944+71 following the metallicity$-$luminosity relation for Local Group dSphs. We investigate several potential sources of observational bias but find that our sample of targeted stars is representative of the metallicity distribution function of d0944+71 and any stellar contamination due to seeing effects is negligible. The low ellipticity of the galaxy and its position in the metallicity$-$luminosity relation suggest that d0944+71 has not been affected by strong tidal stripping.
We present Keck/DEIMOS spectroscopy of stars in the recently discovered Milky Way satellites Hydra II, Pisces II, and Laevens 1. We measured a velocity dispersion of 5.4 (+3.6 -2.4) km/s for Pisces II, but we did not resolve the velocity dispersions of Hydra II or Laevens 1. We marginally resolved the metallicity dispersions of Hydra II and Pisces II but not Laevens 1. Furthermore, Hydra II and Pisces II obey the luminosity-metallicity relation for Milky Way dwarf galaxies (<[Fe/H]> = -2.02 +/- 0.08 and -2.45 +/- 0.07, respectively), whereas Laevens 1 does not (<[Fe/H]> = -1.68 +/- 0.05). The kinematic and chemical properties suggest that Hydra II and Pisces II are dwarf galaxies, and Laevens 1 is a globular cluster. We determined that two of the previously observed blue stars near the center of Laevens 1 are not members of the cluster. A third blue star has ambiguous membership. Hydra II has a radial velocity <v_helio> = 303.1 +/- 1.4 km/s, similar to the leading arm of the Magellanic stream. The mass-to-light ratio for Pisces II is 370 (+310 -240) M_sun/L_sun. It is not among the most dark matter-dominated dwarf galaxies, but it is still worthy of inclusion in the search for gamma rays from dark matter self-annihilation.
We develop, implement and characterise an enhanced data reduction approach which delivers precise, accurate, radial velocities from moderate resolution spectroscopy with the fibre-fed VLT/FLAMES+GIRAFFE facility. This facility, with appropriate care, delivers radial velocities adequate to resolve the intrinsic velocity dispersions of the very faint dSph dwarf galaxies. Importantly, repeated measurements let us reliably calibrate our individual velocity errors ($0.2 leq delta_Vleq 5$ km s$^{-1}$) and directly detect stars with variable radial velocities. We show, by application to the Bootes-1 dwarf spheroidal, that the intrinsic velocity dispersion of this system is significantly below 6.5,km/s reported by previous studies. Our data favor a two-population model of Bootes-1, consisting of a majority `cold stellar component, with velocity dispersion $2.4^{+0.9}_{-0.5}$,km/s, and a minority `hot stellar component, with velocity dispersion $sim 9$,km/s, although we can not completely rule out a single component distribution with velocity dispersion $4.6^{0.8}_{-0.6}$,km/s. We speculate this complex velocity distribution actually reflects the distribution of velocity anisotropy in Bootes-1, which is a measure of its formation processes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا