Do you want to publish a course? Click here

Interaction of a CO molecule with a Pt monoatomic chain: the top geometry

92   0   0.0 ( 0 )
 Added by Gabriele Sclauzero
 Publication date 2008
  fields Physics
and research's language is English
 Authors G. Sclauzero




Ask ChatGPT about the research

Recent experiments showed that the conductance of Pt nanocontacts and nanowires is measurably reduced by adsorption of CO. We present DFT calculations of the electronic structure and ballistic conductance of a Pt monoatomic chain and a CO molecule adsorbed in an on-top position. We find that the main electronic molecule-chain interaction occurs via the $5sigma$ and $2pi^{star}$ orbitals of the molecule, involved in a donation/back-donation process similar to that of CO on transition-metal surfaces. The ideal ballistic conductance of the monoatomic chain undergoes a moderate reduction by about 1.0 G_0 (from 4 G_0 to 3.1 G_0) upon adsorption of CO. By repeating all calculations with and without spin-orbit coupling, no substantial spin-orbit induced change emerges either in the chain-molecule interaction mechanism or in the conductance.



rate research

Read More

335 - G. Sclauzero 2008
We carry out a first-principles density functional study of the interaction between a monatomic Pt wire and a CO molecule, comparing the energy of different adsorption configurations (bridge, on top, substitutional, and tilted bridge) and discussing the effects of spin-orbit (SO) coupling on the electronic structure and on the ballistic conductance of two of these systems (bridge and substitutional). We find that, when the wire is unstrained, the bridge configuration is energetically favored, while the substitutional geometry becomes possible only after the breaking of the Pt-Pt bond next to CO. The interaction can be described by a donation/back-donation process similar to that occurring when CO adsorbs on transition-metal surfaces, a picture which remains valid also in presence of SO coupling. The ballistic conductance of the (tipless) nanowire is not much reduced by the adsorption of the molecule on the bridge and on-top sites, but shows a significant drop in the substitutional case. The differences in the electronic structure due to the SO coupling influence the transmission only at energies far away from the Fermi level so that fully- and scalar-relativistic conductances do not differ significantly.
In order to search for the magnetic ground state of surface nanostructures we extended first principles adiabatic spin dynamics to the case of fully relativistic electron scattering. Our method relies on a constrained density functional theory whereby the evolution of the orientations of the spin-moments results from a semi-classical Landau-Lifshitz equation. This approach is applied to a study of the ground state of a finite Co chain placed along a step edge of a Pt(111) surface. As far as the ground state spin orientation is concerned we obtain excellent agreement with the experiment. Furthermore we observe noncollinearity of the atom-resolved spin and orbital moments. In terms of magnetic force theorem calculations we also demonstrate how a reduction of symmetry leads to the existence of canted magnetic states.
We have quantitatively studied the spin-orbit torque purely generated by the spin Hall effect in a wide range of temperatures by intensionally eliminating the Rashba spin-orbit torque using Pt/Co/Pt trilayers with asymmetric thicknesses of the top and bottom Pt layers. The vanishingly small contribution from the Rashba effect has been confirmed through the vector measurements of the current-induced effective fields. In order to precisely determine the value of the spin Hall torque, the complete cancelation of the spin Hall torque has been verified by fabricating symmetric Pt/Co/Pt structure on SiO2 and Gd3Ga5O12 (GGG) substrates. Despite of the complete cance- lation on the GGG substrate, the spin Hall torque cannot be completely canceled out even when the top and bottom Pt layers have same thicknesses on the SiO2 substrate, which suggests that Pt/Co/Pt trilayers on a GGG substrate is a suitable system for precise measurements of the spin Hall torque. The result of the vector measurements on Pt/Co/Pt/GGG from 300 to 10 K shows that the spin Hall torque is almost independent of temperature, which is quantitatively reproduced under the assumption of the temperature-independent spin Hall angle of Pt.
All-optical helicity dependent switching (AO-HDS), deterministic control of magnetization by circularly polarized laser pulses, allows to efficiently manipulate spins without the need of a magnetic field. However, AO-HDS in ferromagnetic metals so far requires many laser pulses for fully switching their magnetic states. Using a combination of a short, 90-fs linearly polarized pulse and a subsequent longer, 3-ps circularly polarized pulse, we demonstrate that the number of pulses for full magnetization reversal can be reduced to 4 pulse pairs in a single stack of Pt/Co/Pt. The obtained results suggest that the dual-pulse approach is a potential route towards realizing efficient AO-HDS in ferromagnetic metals.
The magnetic proximity effect in top and bottom Pt layers induced by Co in Ta/Pt/Co/Pt multilayers has been studied by interface sensitive, element specific x-ray resonant magnetic reflectivity. The asymmetry ratio for circularly polarized x-rays of left and right helicity has been measured at the Pt $L_3$ absorption edge (11567 eV) with an in-plane magnetic field ($pm158$ mT) to verify its magnetic origin. The proximity-induced magnetic moment in the bottom Pt layer decreases with the thickness of the Ta buffer layer. Grazing incidence x-ray diffraction has been carried out to show that the Ta buffer layer induces the growth of Pt(011) rather than Pt(111) which in turn reduces the induced moment. A detailed density functional theory study shows that an adjacent Co layer induces more magnetic moment in Pt(111) than in Pt(011). The manipulation of the magnetism in Pt by the insertion of a Ta buffer layer provides a new way of controlling the magnetic proximity effect which is of huge importance in spin-transport experiments across similar kind of interfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا