Do you want to publish a course? Click here

Enhanced tunneling magnetoresistance in Fe$mid$ZnSe double junctions

171   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the tunneling magnetoresistance (TMR) of Fe$mid$ZnSe$mid$Fe$mid$ZnSe$mid$Fe (001) double magnetic tunnel junctions as a function of the in-between Fe layers thickness, and compare these results with those of Fe$mid$ZnSe$mid$Fe simple junctions. The electronic band structures are modeled by a parametrized tight-binding Hamiltonian fitted to {it ab initio} calculations, and the conductance is calculated within the Landauer formalism expressed in terms of Greens functions. We find that the conductances for each spin channel and the TMR strongly depend on the in-between Fe layers thickness, and that in some cases they are enhanced with respect to simple junctions, in qualitative agreement with recent experimental studies performed on similar systems. By using a 2D double junction as a simplified system, we show that the conductance enhancement can be explained in terms of the junctions energy spectrum. These results are relevant for spintronics because they demonstrate that the TMR in double junctions can be tuned and enhanced by varying the in-between metallic layers thickness.



rate research

Read More

291 - J. Peralta-Ramos , , A. M. Llois 2008
In this contribution, we calculate the spin-dependent ballistic and coherent transport through epitaxial Fe/ZnSe (001) simple and double magnetic tunnel junctions with two different interface terminations: Zn-terminated and Se-terminated. The electronic structure of the junctions is modeled by a second-nearest neighbors {it spd} tight-binding Hamiltonian parametrized to {it ab initio} calculated band structures, while the conductances and the tunneling magnetoresistance are calculated within Landauers formalism. The calculations are done at zero bias voltage and as a function of energy. We show and discuss the influence of the interface structure on the spin-dependent transport through simple and double tunnel junctions.
We report experiments on epitaxially grown Fe/GaAs/Au tunnel junctions demonstrating that the tunneling anisotropic magnetoresistance (TAMR) effect can be controlled by a magnetic field. Theoretical modelling shows that the interplay of the orbital effects of a magnetic field and the Dresselhaus spin-orbit coupling in the GaAs barrier leads to an independent contribution to the TAMR effect with uniaxial symmetry, whereas the Bychkov-Rashba spin-orbit coupling does not play a role. The effect is intrinsic to barriers with bulk inversion asymmetry.
489 - J. Peralta-Ramos , , A. M. Llois 2008
We calculate the conductances and the tunneling magnetoresistance (TMR) of double magnetic tunnel junctions, taking as a model example junctions composed of Fe/ZnSe/Fe/ZnSe/Fe (001). The calculations are done as a function of the gate voltage applied to the in-between Fe layer slab. We find that the application of a gate voltage to the in-between Fe slab strongly affects the junctions TMR due to the tuning or untuning of conductance resonances mediated by quantum well states. The gate voltage allows a significant enhancement of the TMR, in a more controllable way than by changing the thickness of the in-between Fe slab. This effect may be useful in the design of future spintronic devices based on the TMR effect, requiring large and controllable TMR values.
Using a simple quantum-mechanical model, we explore a tunneling anisotropic magnetoresistance (TAMR) effect in ferroelectric tunnel junctions (FTJs) with a ferromagnetic electrode and a ferroelectric barrier layer, which spontaneous polarization gives rise to the Rashba and Dresselhaus spin-orbit coupling (SOC). For realistic parameters of the model, we predict sizable TAMR measurable experimentally. For asymmetric FTJs, which electrodes have different work functions, the built-in electric field affects the SOC parameters and leads to TAMR dependent on ferroelectric polarization direction. The SOC change with polarization switching affects tunneling conductance, revealing a new mechanism of tunneling electroresistance (TER). These results demonstrate new functionalities of FTJs which can be explored experimentally and used in electronic devices.
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus spin-orbit couplings that appear at junction interfaces and in the tunneling region. We also investigate the transport properties of ferromagnet/semiconductor/ferromagnet tunnel junctions and show that in such structures the spin-orbit interaction leads not only to the TAMR effect but also to the anisotropy of the conventional tunneling magnetoresistance (TMR). The resulting anisotropic tunneling magnetoresistance (ATMR) depends on the absolute magnetization directions in the ferromagnets. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus spin-orbit couplings produces differences between the rates of transmitted and reflected spins at the ferromagnet/seminconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Furthermore, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا