No Arabic abstract
Let G be a profinite group which is topologically finitely generated, p a prime number and d an integer. We show that the functor from rigid analytic spaces over Q_p to sets, which associates to a rigid space Y the set of continuous d-dimensional pseudocharacters G -> O(Y), is representable by a quasi-Stein rigid analytic space X, and we study its general properties. Our main tool is a theory of determinants extending the one of pseudocharacters but which works over an arbitrary base ring; an independent aim of this paper is to expose the main facts of this theory. The moduli space X is constructed as the generic fiber of the moduli formal scheme of continuous formal determinants on G of dimension d. As an application to number theory, this provides a framework to study the generic fibers of pseudodeformation rings (e.g. of Galois representations), especially in the residually reducible case, and including when p <= d.
Let $k$ be a perfect field of characteristic $p geq 3$. We classify $p$-divisible groups over regular local rings of the form $W(k)[[t_1,...,t_r,u]]/(u^e+pb_{e-1}u^{e-1}+...+pb_1u+pb_0)$, where $b_0,...,b_{e-1}in W(k)[[t_1,...,t_r]]$ and $b_0$ is an invertible element. This classification was in the case $r = 0$ conjectured by Breuil and proved by Kisin.
We explicitly compute the adjoint L-function of those L-packets of representations of the group GSp(4) over a p-adic field of characteristic zero that contain non-supercuspidal representations. As an application we verify a conjecture of Gross-Prasad and Rallis in this case. The conjecture states that the adjoint L-function has a pole at s=1 if and only if the L-packet contains a generic representation.
We construct a Langlands parameterization of supercuspidal representations of $G_2$ over a $p$-adic field. More precisely, for any finite extension $K / QQ_p$ we will construct a bijection [ CL_g : CA^0_g(G_2,K) rightarrow CG^0(G_2,K) ] from the set of generic supercuspidal representations of $G_2(K)$ to the set of irreducible continuous homomorphisms $rho : W_K to G_2(CC)$ with $W_K$ the Weil group of $K$. The construction of the map is simply a matter of assembling arguments that are already in the literature, together with a previously unpublished theorem of G. Savin on exceptional theta correspondences, included as an appendix. The proof that the map is a bijection is arithmetic in nature, and specifically uses automorphy lifting theorems. These can be applied thanks to a recent result of Hundley and Liu on automorphic descent from $GL(7)$ to $G_2$.
We analyze reducibility points of representations of $p$-adic groups of classical type, induced from generic supercuspidal representations of maximal Levi subgroups, both on and off the unitary axis. We are able to give general, uniform results in terms of local functorial transfers of the generic representations of the groups we consider. The existence of the local transfers follows from global generic transfers that were established earlier.
Let $G$ be a connected reductive group over a $p$-adic local field $F$. We propose and study the notions of $G$-$varphi$-modules and $G$-$(varphi, abla)$-modules over the Robba ring, which are exact faithful $F$-linear tensor functors from the category of $G$-representations on finite-dimensional $F$-vector spaces to the categories of $varphi$-modules and $(varphi, abla)$-modules over the Robba ring, respectively, commuting with the respective fiber functors. We study Kedlayas slope filtration theorem in this context, and show that $G$-$(varphi, abla)$-modules over the Robba ring are $G$-quasi-unipotent, which is a generalization of the $p$-adic local monodromy theorem proven independently by Y. Andre, K. S. Kedlaya, and Z. Mebkhout.