Do you want to publish a course? Click here

Instruction sequences and non-uniform complexity theory

228   0   0.0 ( 0 )
 Added by Kees Middelburg
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

We develop theory concerning non-uniform complexity in a setting in which the notion of single-pass instruction sequence considered in program algebra is the central notion. We define counterparts of the complexity classes P/poly and NP/poly and formulate a counterpart of the complexity theoretic conjecture that NP is not included in P/poly. In addition, we define a notion of completeness for the counterpart of NP/poly using a non-uniform reducibility relation and formulate complexity hypotheses which concern restrictions on the instruction sequences used for computation. We think that the theory developed opens up an additional way of investigating issues concerning non-uniform complexity.



rate research

Read More

We present an approach to non-uniform complexity in which single-pass instruction sequences play a key part, and answer various questions that arise from this approach. We introduce several kinds of non-uniform complexity classes. One kind includes a counterpart of the well-known non-uniform complexity class P/poly and another kind includes a counterpart of the well-known non-uniform complexity class NP/poly. Moreover, we introduce a general notion of completeness for the non-uniform complexity classes of the latter kind. We also formulate a counterpart of the well-known complexity theoretic conjecture that NP is not included in P/poly. We think that the presented approach opens up an additional way of investigating issues concerning non-uniform complexity.
Each Boolean function can be computed by a single-pass instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. Auxiliary Boolean registers are not necessary for this. In the current paper, we show that, in the case of the parity functions, shorter instruction sequences are possible with the use of an auxiliary Boolean register in the presence of instructions to complement the content of auxiliary Boolean registers. This result supports, in a setting where programs are instruction sequences acting on Boolean registers, a basic intuition behind the storage of auxiliary data, namely the intuition that this makes possible a reduction of the size of a program.
This paper concerns the question to what extent it can be efficiently determined whether an arbitrary program correctly solves a given problem. This question is investigated with programs of a very simple form, namely instruction sequences, and a very simple problem, namely the non-zeroness test on natural numbers. The instruction sequences concerned are of a kind by which, for each $n > 0$, each function from ${0,1}^n$ to ${0,1}$ can be computed. The established results include the time complexities of the problem of determining whether an arbitrary instruction sequence correctly implements the restriction to ${0,1}^n$ of the function from ${0,1}^*$ to ${0,1}$ that models the non-zeroness test function, for $n > 0$, under several restrictions on the arbitrary instruction sequence.
These are lectures notes for the introductory graduate courses on geometric complexity theory (GCT) in the computer science department, the university of Chicago. Part I consists of the lecture notes for the course given by the first author in the spring quarter, 2007. It gives introduction to the basic structure of GCT. Part II consists of the lecture notes for the course given by the second author in the spring quarter, 2003. It gives introduction to invariant theory with a view towards GCT. No background in algebraic geometry or representation theory is assumed. These lecture notes in conjunction with the article cite{GCTflip1}, which describes in detail the basic plan of GCT based on the principle called the flip, should provide a high level picture of GCT assuming familiarity with only basic notions of algebra, such as groups, rings, fields etc.
117 - Ketan D. Mulmuley 2009
Geometric complexity theory (GCT) is an approach to the P vs. NP and related problems. This article gives its complexity theoretic overview without assuming any background in algebraic geometry or representation theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا