Do you want to publish a course? Click here

What do stars tell us about planets? Asteroseismology of exoplanet-host stars

464   0   0.0 ( 0 )
 Added by Sylvie Vauclair
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Studying the internal structure of exoplanet-host stars compared to that of similar stars without detected planets is particularly important for the understanding of planetary formation. The observed average overmetallicity of stars with planets is an interesting point in that respect. In this framework, asteroseismic studies represent an excellent tool to determine the structural differences between stars with and without detected planets. It also leads to more precise values of the stellar parameters like mass, gravity, effective temperature, than those obtained from spectroscopy alone. Interestingly enough, the detection of stellar oscillations is obtained with the same instruments as used for the discovery of exoplanets, both from the ground and from space. The time scales however are very different, as the oscillations of solar type stars have periods around five to ten minutes, while the exoplanets orbits may go from a few days up to many years. Here I discuss the asteroseismology of exoplanet-host stars, with a few examples.



rate research

Read More

Deeply virtual Compton scattering (DVCS) and timelike Compton scattering (TCS) leading twist amplitudes are intimately related thanks to their analytic properties as a function of $Q^2$. We exploit this feature to use Compton form factors previously extracted from available DVCS data and derive data-driven predictions for TCS observables to be measured in near future experiments. Our results quantitatively illustrate the complementarity of DVCS and TCS experiments.
118 - Zining Zhu , Bai Li , Yang Xu 2021
As the numbers of submissions to conferences grow quickly, the task of assessing the quality of academic papers automatically, convincingly, and with high accuracy attracts increasing attention. We argue that studying interpretable dimensions of these submissions could lead to scalable solutions. We extract a collection of writing features, and construct a suite of prediction tasks to assess the usefulness of these features in predicting citation counts and the publication of AI-related papers. Depending on the venues, the writing features can predict the conference vs. workshop appearance with F1 scores up to 60-90, sometimes even outperforming the content-based tf-idf features and RoBERTa. We show that the features describe writing style more than content. To further understand the results, we estimate the causal impact of the most indicative features. Our analysis on writing features provides a perspective to assessing and refining the writing of academic articles at scale.
158 - Richard de Grijs 2008
The diagnostic age versus mass-to-light ratio diagram is often used in attempts to constrain the shape of the stellar initial mass function, and the stability and the potential longevity of extragalactic young to intermediate-age massive star clusters. Here, we explore the pitfalls associated with this approach and its potential for use with Galactic open clusters. We conclude that for an open cluster to survive for any significant fraction of a Hubble time (in the absence of substantial external perturbations), it is a necessary but not a sufficient condition to be located close to the predicted photometric evolutionary sequences for normal simple stellar populations.
Planck data has not found the smoking gun of non-Gaussianity that would have necessitated consideration of inflationary models beyond the simplest canonical single field scenarios. This raises the important question of what these results do imply for more general models, and in particular, multi-field inflation. In this paper we revisit four ways in which two-field scenarios can behave differently from single field models; two-field slow-roll dynamics, curvaton-type behaviour, inflation ending on an inhomogeneous hypersurface and modulated reheating. We study the constraints that Planck data puts on these classes of behaviour, focusing on the latter two which have been least studied in the recent literature. We show that these latter classes are almost equivalent, and extend their previous analyses by accounting for arbitrary evolution of the isocurvature mode which, in particular, places important limits on the Gaussian curvature of the reheating hypersurface. In general, however, we find that Planck bispectrum results only constrain certain regions of parameter space, leading us to conclude that inflation sourced by more than one scalar field remains an important possibility.
Using a sample of 229618 narrow emission-line galaxies, we have determined the normal star formation histories (SFHs) for galaxies with different activity types: star forming galaxies (SFGs), transition type objects (TOs), Seyfert 2s (Sy2s) and LINERs. We find that the variation of the SFH with the activity type is explained by the mass of the galaxies and the importance of their bulge: the LINERs reside in massive early-type galaxies, the Sy2s and TOs are hosted by intermediate mass galaxies with intermediate morphological types, and the SFGs are found in lower mass late-type spirals. Except for the Sy2s, the more massive galaxies formed the bulk of their stars more rapidly than the less massive ones. The Sy2s formed their stars more slowly and show presently an excess in star formation. We have also found that the maximum in star formation rate in the past increases with the virial mass within the aperture (VMA), the VMA increasing from the SFGs to the TOs, to the Sy2s, culminating in the LINERs. This correlation suggests that the bulges and the supermassive black holes at the center of galaxies grow in parallel, in good agreement with the M(BH)-sigma relation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا