No Arabic abstract
We apply the Effective Field Theory approach to General Relativity, introduced by Goldberger and Rothstein, to study point-like and string-like sources in the context of scalar-tensor theories of gravity. Within this framework we compute the classical energy-momentum tensor renormalization to first Post-Newtonian order or, in the case of extra scalar fields, up to first order in the (non-derivative) trilinear interaction terms: this allows to write down the corrections to the standard (Newtonian) gravitational potential and to the extra-scalar potential. In the case of one-dimensional extended sources we give an alternative derivation of the renormalization of the string tension enabling a re-analysis of the discrepancy between the results obtained by Dabholkar and Harvey in one paper and by Buonanno and Damour in another, already discussed in the latter.
We investigate the second-order gravitational scalar perturbations for a barotropic fluid. We derive the effective energy-momentum tensor described by the quadratic terms of the gravitational and the matter perturbations. We show that the second-order effective energy-momentum tensor is gauge dependent. We impose three gauge conditions (longitudinal, spatially-flat, and comoving gauges) for dust and radiation. The resulting energy-momentum tensor is described only by a gauge invariant variable, but the functional form depends on the gauge choice. In the matter-dominated epoch with dust-like fluid background, the second-order effective energy density and pressure of the perturbations evolve as 1/a^2 in all three gauge choices, like the curvature density of the Universe, but they do not provide the correct equation of state. The value of this parameter depends also on the gauge choice. In the radiation-dominated epoch, the perturbations in the short-wave limit behave in the same way as the radiation-like fluid in the longitudinal and the spatially-flat gauges. However, they behave in a different way in the comoving gauge. As a whole, we conclude that the second-order effective energy-momentum tensor of the scalar perturbation is strictly gauge dependent.
The effective field theory (EFT) of cosmological perturbations is a useful framework to deal with the low-energy degrees of freedom present for inflation and dark energy. We review the EFT for modified gravitational theories by starting from the most general action in unitary gauge that involves the lapse function and the three-dimensional geometric scalar quantities appearing in the Arnowitt-Deser-Misner (ADM) formalism. Expanding the action up to quadratic order in the perturbations and imposing conditions for the elimination of spatial derivatives higher than second order, we obtain the Lagrangian of curvature perturbations and gravitational waves with a single scalar degree of freedom. The resulting second-order Lagrangian is exploited for computing the scalar and tensor power spectra generated during inflation. We also show that the most general scalar-tensor theory with second-order equations of motion-Horndeski theory-belongs to the action of our general EFT framework and that the background equations of motion in Horndeski theory can be conveniently expressed in terms of three EFT parameters. Finally we study the equations of matter density perturbations and the effective gravitational coupling for dark energy models based on Horndeski theory, to confront the models with the observations of large-scale structures and weak lensing.
We study the effective energy-momentum tensor (EMT) for cosmological perturbations and formulate the gravitational back-reaction problem in a gauge invariant manner. We analyze the explicit expressions for the EMT in the cases of scalar metric fluctuations and of gravitational waves and derive the resulting equations of state. The formalism is applied to investigate the back-reaction effects in chaotic inflation. We find that for long wavelength scalar and tensor perturbations, the effective energy density is negative and thus counteracts any pre-existing cosmological constant. For scalar perturbations during an epoch of inflation, the equation of state is de Sitter-like.
The $f(R,T)$ gravity field equations depend generically on both the Ricci scalar $R$ and trace of the energy-momentum tensor $T$. Within the assumption of perfect fluids, the theory carries an arbitrariness regarding the choice of the matter lagrangian density $mathcal{L}$, not uniquely defined. Such an arbitrariness can be evaded by working with the trace of the theory field equations. From such an equation, one can obtain a form for $mathcal{L}$, which does not carry the arbitrariness. The obtained form for $mathcal{L}$ shows that the $f(R,T)$ gravity is unimodular. A new version of the theory is, therefore, presented and forthcoming applications are expected.
Studying the effects of dark energy and modified gravity on cosmological scales has led to a great number of physical models being developed. The effective field theory (EFT) of cosmic acceleration allows an efficient exploration of this large model space, usually carried out on a phenomenological basis. However, constraints on such parametrized EFT coefficients cannot be trivially connected to fundamental covariant theories. In this paper we reconstruct the class of covariant Horndeski scalar-tensor theories that reproduce the same background dynamics and linear perturbations as a given EFT action. One can use this reconstruction to interpret constraints on parametrized EFT coefficients in terms of viable covariant Horndeski theories. We demonstrate this method with a number of well-known models and discuss a range of future applications.