A new method is proposed to calculate wave functions in $k_T$-factorization in cite{LiMi} as a comment about our paper cite{FMW}. We point out that the results obtained with the method are in conflict with the translation invariance and depend on the chosen contours for loop-integrals. Therefore, the method is in principle unacceptable and the results with the method cannot be correct.
In the $k_T$-factorization for exclusive processes, the nontrivial $k_T$-dependence of perturbative coefficients, or hard parts, is obtained by taking off-shell partons. This brings up the question of whether the $k_T$-factorization is gauge invariant. We study the $k_T$-factorization for the case $pi gamma^* to gamma$ at one-loop in a general covariant gauge. Our results show that the hard part contains a light-cone singularity that is absent in the Feynman gauge, which indicates that the $k_T$-factorization is {it not} gauge invariant. These divergent contributions come from the $k_T$-dependent wave function of $pi$ and are not related to a special process. Because of this fact the $k_T$-factorization for any process is not gauge invariant and is violated. Our study also indicates that the $k_T$-factorization used widely for exclusive B-decays is not gauge invariant and is violated.
In their Comment, Borasoy et al. [arXiv:hep-ph/0512279], criticize our results [PRL 95 (2005) 172502] that accommodate both scattering data and the new accurate measurement by DEAR of the shift and width of kaonic hydrogen. In our calculations we have employed unitary chiral perturbation theory (UCHPT). We discuss why their arguments are irrelevant or do not hold.
In this Reply we propose a modified security proof of the Quantum Dense Key Distribution protocol detecting also the eavesdropping attack proposed by Wojcik in his Comment.