Dynamical and Statistical Criticality in a Model of Neural Tissue


Abstract in English

For the nervous system to work at all, a delicate balance of excitation and inhibition must be achieved. However, when such a balance is sought by global strategies, only few modes remain balanced close to instability, and all other modes are strongly stable. Here we present a simple model of neural tissue in which this balance is sought locally by neurons following `anti-Hebbian behavior: {sl all} degrees of freedom achieve a close balance of excitation and inhibition and become critical in the dynamical sense. At long timescales, the modes of our model oscillate around the instability line, so an extremely complex breakout dynamics ensues in which different modes of the system oscillate between prominence and extinction. We show the system develops various anomalous statistical behaviours and hence becomes self-organized critical in the statistical sense.

Download