Do you want to publish a course? Click here

A deep look into the cores of young clusters I. sigma-Orionis

99   0   0.0 ( 0 )
 Added by Herve Bouy
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nearby young clusters are privileged places to study the star formation history. Over the last decade, the sigma-Orionis cluster has been a prime location for the study of young very low mass stars, substellar and isolated planetary mass objects and the determination of the initial mass function. To extend previous studies of this association to its core, we searched for ultracool members and new multiple systems within the 1.5x1.5 central region of the cluster. We obtained deep multi-conjugate adaptive optics (MCAO) images of the core of the sigma-Orionis cluster with the prototype MCAO facility MAD at the VLT using the H and Ks filters. These images allow us to reach Delta H~5mag as close as 0.2 on a typical source with H=14.5mag. These images were complemented by archival SofI Ks-band images and Spitzer IRAC and MIPS mid-infrared images. We report the detection of 2 new visual multiple systems, one being a candidate binary proplyd and the other one a low mass companion to the massive star sigma Ori E. Of the 36 sources detected in the images, 25 have a H-band luminosity lower than the expected planetary mass limit for members, and H-Ks color consistent with the latest theoretical isochrones. Nine objects have additional Spitzer photometry and spectral energy distribution consistent with them being cluster members. One of them has a spectral energy distribution from H to 3.6micron consistent with that of a 5.5 MJup cluster member. Complementary NTT/SofI and Spitzer photometry allow us to confirm the nature and membership of two L-dwarf planetary mass candidates.



rate research

Read More

Over the past years, the lambda-Orionis cluster has been a prime location for the study of young very low mass stars, substellar and isolated planetary mass objects and the determination of the initial mass function and other properties of low mass cluster members. In the continuity of our previous studies of young associations cores, we search for ultracool members and new multiple systems within the central 5.3 (~0.6pc) of the cluster. We obtained deep seeing limited J, Ks-band images of the 5.3 central part of the cluster with NTT/SofI and H-band images with CAHA/Omega2000. These images were complemented by multi-conjugate adaptive optics (MCAO) H and Ks images of the 1.5 central region of the lambda-Orionis cluster obtained with the prototype MCAO facility MAD at the VLT. The direct vicinity of the massive lambda-Ori O8III-star was probed using NACO/SDI at the VLT. Finally, we also retrieved Spitzer IRAC images of the same area and used archival Subaru Suprime-Cam and CFHT CFHT12K i-band images. We report the detection of 9 new member candidates selected from optical and near-IR color-color and color-magnitude diagrams and 7 previously known members. The high spatial resolution images resolve 3 new visual multiple systems. Two of them are most likely not members of the association. The third one is made of a brown dwarf candidate companion to the F8V star HD36861C. The simultaneous differential images allow us to rule out the presence of visual companions more massive than M>0.07Msun in the range 1-2.5, and M>0.25Msun in the range 0.5-2.5
We present a deep I,Z photometric survey covering a total area of 1.12 deg^{2} of the Sigma Orionis cluster (Icompl=22 and Zcompl=21.5mag). From I, I-Z color-magnitude diagrams we have selected 153 candidates that fit the previously known sequence of the cluster. Using J-band photometry, we find that 124 of the 151 candidates follow the previously known infrared photometric sequence of the cluster and are probably members. We have studied the spatial distribution of these candidates and found that there are objects located at distances greater than 30 arcmin to the north and west of Sigma Orionis that probably belong to different populations of the Orions Belt. For the 102 bona fide Sigma Orionis cluster member candidates, we find that the radial surface density can be represented by a decreasing exponential function (sigma = sigma_0 e^{-r/r_0}) with a central density of sigma_0=0.23+/-0.03 object/arcmin^{2} and a characteristic radius of r_0=9.5+/-0.7 arcmin. From a statistical comparison with Monte Carlo simulations, we conclude that the spatial distribution of the cluster member candidates is compatible with a Poissonian distribution and, hence, they are not mainly forming aggregations or sub-clustering. Using near-infrared JHK-band data from 2MASS and UKIDSS and mid-infrared data from IRAC/Spitzer, we find that 5-9 % of the brown dwarf candidates in the Sigma Orionis cluster have K-band excesses and 31+/-7 % of them show mid-infrared excesses at wavelengths longer than 5.8 microns, which are probably related to the presence of disks. We have also calculated the initial mass spectrum (dN/dm) of Sigma Orionis from very low mass stars (0.10 Msol) to the deuterium-burning mass limit (0.012-0.013 Msol). This is a rising function toward lower masses and can be represented by a power-law distribution (dN/dm = m^{-alpha}) with an exponent alpha of 0.7+/-0.3 for an age of 3 Myr.
We have carried out multi-epoch, time-series differential I-band photometry of a large sample of objects in the south-east region of the young (~3 Myr), nearby (~350 pc) sigma Orionis open cluster. A field of ~1000 arcmin^2 was monitored during four nights over a period of two years. Using this dataset, we have studied the photometric variability of twenty-eight brown dwarf cluster candidates with masses ranging from the stellar-substellar boundary down to the planetary-mass domain. We have found that about 50% of the sample show photometric variability on timescales from less than one hour to several days and years. The amplitudes of the I-band light curves range from less than 0.01 up to ~0.4 magnitudes. A correlation between the near-infrared excess in the K_s band, strong Halpha emission and large-amplitude photometric variation is observed. We briefly discuss how these results may fit the different scenarios proposed to explain the variability of cool and ultracool dwarfs (i.e. magnetic spots, patchy obscuration by dust clouds, surrounding accretion discs and binarity). Additionally, we have determined tentative rotational periods in the range 3 to 40 h for three objects with masses around 60 M_Jup, and the rotational velocity of 14+/-4 km/s for one of them.
VLT/FORS spectroscopy and 2MASS near-infrared photometry, together with previously known data, have been used to establish the membership and the properties of a sample of low-mass candidate members of the sigma Orionis cluster with masses spanning from 1 Msun down to about 0.013 Msun (i.e., deuterium-burning mass limit). We have observed K-band infrared excess and remarkably intense H(alpha) emission in various cluster members, which, in addition to the previously detected forbidden emision lines and the presence of LiI in absorption at 6708 A, have allowed us to tentatively classify sigma Orionis members as classical or weak-line TTauri stars and substellar analogs. Variability of the H(alpha) line has been investigated and detected in some objects. Based on the K-band infrared excesses and the intensity of H(alpha) emission, we estimate that the minimum disk frequency of the sigma Orionis low-mass population is in the range 5-12%.
We present high-quality, medium resolution X-shooter/VLT spectra in the range 300-2500 nm for a sample of 12 very low-mass stars in the sigma Orionis cluster. The sample includes stars with masses ranging from 0.08 to 0.3 M$_odot$. The aim of this first paper is to investigate the reliability of the many accretion tracers currently used to measure the mass accretion rate in low-mass, young stars. We use our spectra to measure the accretion luminosity from the continuum excess emission in the UV and visual; the derived mass accretion rates range from 10$^{-9}$ M$_{odot}$ yr$^{-1}$ down to 5$times10^{-11}$ M$_{odot}$ yr$^{-1}$, allowing us to investigate the behavior of the accretion-driven emission lines in very-low mass accretion rate regimes. We compute the luminosity of ten accretion-driven emission lines, from the UV to the near-IR, obtained simultaneously. Most of the secondary tracers correlate well with the accretion luminosity derived from the continuum excess emission. We confirm the validity of the correlations between accretion luminosities and line luminosities given in the literature, with the possible exception of Halpha. When looking at individual objects, we find that the Hydrogen recombination lines, from the UV to the near-IR, give good and consistent measurements of accretion luminosities, often in better agreement than the uncertainties introduced by the adopted correlations. The average accretion luminosity derived from several Hydrogen lines, measured simultaneously, have a much reduced error. This suggests that some of the spread in the literature correlations may be due to the use of non-simultaneous observations of lines and continuum. Three stars in our sample deviate from this behavior, and we discuss them individually.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا