Spatially Resolved Mapping of Local Polarization Dynamics in an Ergodic Phase of Ferroelectric Relaxor


Abstract in English

Spatial variability of polarization relaxation kinetics in relaxor ferroelectric 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 is studied using time-resolved Piezoresponse Force Microscopy. Local relaxation attributed to the reorientation of polar nanoregions is shown to follow stretched exponential dependence, exp(-(t/tau)^beta), with beta~~0.4, much larger than the macroscopic value determined from dielectric spectra (beta~~0.09). The spatial inhomogeneity of relaxation time distributions with the presence of 100-200 nm fast and slow regions is observed. The results are analyzed to map the Vogel-Fulcher temperatures on the nanoscale.

Download