Do you want to publish a course? Click here

Entanglement and quantum phase transition in alternating XY spin chain with next-nearest neighbour interactions

156   0   0.0 ( 0 )
 Added by Chuanjia Shan
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using the method of density-matrix renormalization-group to solve the different spin-spin correlation functions, the nearest-neighbouring entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of one-dimensional alternating Heisenberg XY spin chain is investigated in the presence of alternating nearest neighbour interactions of exchange couplings, external magnetic fields and next-nearest neighbouring interactions. For dimerized ferromagnetic spin chain, NNNE appears only above the critical dimerized interaction, meanwhile, the dimerized interaction effects quantum phase transition point and improves NNNE to a large value. We also study the effect of ferromagnetic or antiferromagnetic next-nearest neighboring (NNN) interactions on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction increases and shrinks NNE below and above critical frustrated interaction respectively, while the antiferromagnetic NNN interaction always decreases NNE. The antiferromagnetic NNN interaction results to a larger value of NNNE in comparison to the case when the NNN interaction is ferromagnetic.



rate research

Read More

The evolution of entanglement in a 3-spin chain with nearest-neighbor Heisenberg-XY interactions for different initial states is investigated here. In an NMR experimental implementation, we generate multipartite entangled states starting from initial separable pseudo-pure states by simulating nearest-neighbor XY interactions in a 3-spin linear chain of nuclear spin qubits. For simulating XY interactions, we follow algebraic method of Zhang et al. [Phys. Rev. A 72, 012331 (2005)]. Bell state between end qubits has been generated by using only the unitary evolution of the XY Hamiltonian. For generating W-state and GHZ-state a single qubit rotation is applied on second and all the three qubits respectively after the unitary evolution of the XY Hamiltonian.
We investigate the phase diagrams of a one-dimensional lattice model of fermions and of a spin chain with interactions extending up to next-nearest neighbour range. In particular, we investigate the appearance of regions with dominant pairing physics in the presence of nearest-neighbour and next-nearest-neighbour interactions. Our analysis is based on analytical calculations in the classical limit, bosonization techniques and large-scale density-matrix renormalization group numerical simulations. The phase diagram, which is investigated in all relevant filling regimes, displays a remarkably rich collection of phases, including Luttinger liquids, phase separation, charge-density waves, bond-order phases, and exotic cluster Luttinger liquids with paired particles. In relation with recent studies, we show several emergent transition lines with a central charge $c = 3/2$ between the Luttinger-liquid and the cluster Luttinger liquid phases. These results could be experimentally investigated using highly-tunable quantum simulators.
We calculate the quantum phase diagram of the {it XXZ} chain with nearest-neighbor (NN) $J_{1}$ and next-NN exchange $J_{2}$ with anisotropies $Delta_{1}$ and $Delta_{2}$ respectively. In particular we consider the case $Delta_{1}=-Delta_{2}$ to interpolate between the {it XX} chain ($% Delta_{i}=0$) and the isotropic model with ferromagnetic $J_{2}$. For $% Delta_{1}<-1$, a ferromagnetic and two antiferromagnetic phases exist. For $| Delta_{i}| <1$, the boundary between the dimer and spin fluid phases is determined by the method of crossing of excitation spectra. For large $J_{2}/J_{1}$, this method seems to indicate the existence of a second spin fluid critical phase. However, an analysis of the spin stiffness and magnetic susceptibility for $Delta_{1}=Delta_{2}=1$ suggest that a small gap is present.
Given a uniform, frustration-free family of local Lindbladians defined on a quantum lattice spin system in any spatial dimension, we prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing of the stationary Gibbs states and the rapid decay of the relative entropy on finite-size blocks. Our result leads to the first examples of the positivity of the modified logarithmic Sobolev inequality for quantum lattice spin systems independently of the system size. Moreover, we show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosmans complete analyticity of the free-energy at equilibrium. The latter typically holds above a critical temperature Tc. Our results have wide-ranging applications in quantum information. As an illustration, we discuss four of them: first, using techniques of quantum optimal transport, we show that a quantum annealer subject to a finite range classical noise will output an energy close to that of the fixed point after constant annealing time. Second, we prove Gaussian concentration inequalities for Lipschitz observables and show that the eigenstate thermalization hypothesis holds for certain high-temperture Gibbs states. Third, we prove a finite blocklength refinement of the quantum Stein lemma for the task of asymmetric discrimination of two Gibbs states of commuting Hamiltonians satisfying our conditions. Fourth, in the same setting, our results imply the existence of a local quantum circuit of logarithmic depth to prepare Gibbs states of a class of commuting Hamiltonians.
413 - G. V. Lopez , T. Gorin , L. Lara 2007
We implement Grovers quantum search algorithm on a nuclear spin chain quantum computer, taking into Ising type interactions between nearest and second nearest neighbours into account. The performance of the realisation of the algorithm is studied by numerical simulations with four spins. We determine the temporal behaviour of the fidelity during the algorithm, and we compute the final fidelity as a function of the Rabi frequency. For the latter, we obtained pronounced maxima at frequencies which fulfil the condition of the (2pi k)-method with respect to the second nearest neighbour interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا