No Arabic abstract
We present a detailed study of the statistical properties of an Agent Based Model and of its generalization to the multiplicative dynamics. The aim of the model is to consider the minimal elements for the understanding of the origin of the Stylized Facts and their Self-Organization. The key elements are fundamentalist agents, chartist agents, herding dynamics and price behavior. The first two elements correspond to the competition between stability and instability tendencies in the market. The herding behavior governs the possibility of the agents to change strategy and it is a crucial element of this class of models. The linear approximation permits a simple interpretation of the model dynamics and, for many properties, it is possible to derive analytical results. The generalized non linear dynamics results to be extremely more sensible to the parameter space and much more difficult to analyze and control. The main results for the nature and Self-Organization of the Stylized Facts are, however, very similar in the two cases. The main peculiarity of the non linear dynamics is an enhancement of the fluctuations and a more marked evidence of the Stylized Facts. We will also discuss some modifications of the model to introduce more realistic elements with respect to the real markets.
We introduce a minimal Agent Based Model for financial markets to understand the nature and Self-Organization of the Stylized Facts. The model is minimal in the sense that we try to identify the essential ingredients to reproduce the main most important deviations of price time series from a Random Walk behavior. We focus on four essential ingredients: fundamentalist agents which tend to stabilize the market; chartist agents which induce destabilization; analysis of price behavior for the two strategies; herding behavior which governs the possibility of changing strategy. Bubbles and crashes correspond to situations dominated by chartists, while fundamentalists provide a long time stability (on average). The Stylized Facts are shown to correspond to an intermittent behavior which occurs only for a finite value of the number of agents N. Therefore they correspond to finite size effect which, however, can occur at different time scales. We propose a new mechanism for the Self-Organization of this state which is linked to the existence of a threshold for the agents to be active or not active. The feedback between price fluctuations and number of active agents represent a crucial element for this state of Self-Organized-Intermittency. The model can be easily generalized to consider more realistic variants.
We introduce a minimal Agent Based Model with two classes of agents, fundamentalists (stabilizing) and chartists (destabilizing) and we focus on the essential features which can generate the stylized facts. This leads to a detailed understanding of the origin of fat tails and volatility clustering and we propose a mechanism for the self-organization of the market dynamics in the quasi-critical state. The stylized facts are shown to correspond to finite size effects which, however, can be active at different time scales. This implies that universality cannot be expected in describing these properties in terms of effective critical exponents. The introduction of a threshold in the agents action (small price fluctuations lead to no-action) triggers the self-organization towards the quasi-critical state. Non-stationarity in the number of active agents and in their action plays a fundamental role. The model can be easily generalized to more realistic variants in a systematic way.
We propose a dynamical theory of market liquidity that predicts that the average supply/demand profile is V-shaped and {it vanishes} around the current price. This result is generic, and only relies on mild assumptions about the order flow and on the fact that prices are (to a first approximation) diffusive. This naturally accounts for two striking stylized facts: first, large metaorders have to be fragmented in order to be digested by the liquidity funnel, leading to long-memory in the sign of the order flow. Second, the anomalously small local liquidity induces a breakdown of linear response and a diverging impact of small orders, explaining the square-root impact law, for which we provide additional empirical support. Finally, we test our arguments quantitatively using a numerical model of order flow based on the same minimal ingredients.
We present results on simulations of a stock market with heterogeneous, cumulative information setup. We find a non-monotonic behaviour of traders returns as a function of their information level. Particularly, the average informed agents underperform random traders; only the most informed agents are able to beat the market. We also study the effect of a strategy updating mechanism, when traders have the possibility of using other pieces of information than the fundamental value. These results corroborate the latter ones: it is only for the most informed player that it is rewarding to stay fundamentalist. The simulations reproduce some stylized facts of tick-by-tick stock-exchange data and globally show informational efficiency.
One dimensional stylized model taking into account spatial activity of firms with uniformly distributed customers is proposed. The spatial selling area of each firm is defined by a short interval cut out from selling space (large interval). In this representation, the firm size is directly associated with the size of its selling interval. The recursive synchronous dynamics of economic evolution is discussed where the growth rate is proportional to the firm size incremented by the term including the overlap of the selling area with areas of competing firms. Other words, the overlap of selling areas inherently generate a negative feedback originated from the pattern of demand. Numerical simulations focused on the obtaining of the firm size distributions uncovered that the range of free parameters where the Paretos law holds corresponds to the range for which the pair correlation between the nearest neighbor firms attains its minimum.