Do you want to publish a course? Click here

Dynamics of interacting dark energy model in Einstein and Loop Quantum Cosmology

87   0   0.0 ( 0 )
 Added by Chen Songbai
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the background dynamics when dark energy is coupled to dark matter in the universe described by Einstein cosmology and Loop Quantum Cosmology. We introduce a new general form of dark sector coupling, which presents us a more complicated dynamical phase space. Differences in the phase space in obtaining the accelerated scaling attractor in Einstein cosmology and Loop Quantum Cosmology are disclosed.



rate research

Read More

We study the dynamics of a phantom scalar field dark energy interacting with dark matter in loop quantum cosmology (LQC). Two kinds of coupling of the form $alpha{rho_m}{dotphi}$ (case I) and $3beta H (rho_phi +rho_m)$ (case II) between the phantom energy and dark matter are examined with the potential for the phantom field taken to be exponential. For both kinds of interactions, we find that the future singularity appearing in the standard FRW cosmology can be avoided by loop quantum gravity effects. In case II, if the phantom field is initially rolling down the potential, the loop quantum effect has no influence on the cosmic late time evolution and the universe will accelerate forever with a constant energy ratio between the dark energy and dark matter.
The present work deals with the dynamical system investigation of interacting dark energy models (quintessence and phantom) in the framework of Loop Quantum Cosmology by taking into account a broad class of self-interacting scalar field potentials. The main reason for studying potentials beyond the exponential type is to obtain additional critical points which can yield more interesting cosmological solutions. The stability of critical points and the asymptotic behavior of the phase space are analyzed using dynamical system tools and numerical techniques. We study two class of interacting dark energy models and consider two specific potentials as examples: the hyperbolic potential and the inverse power-law potential. We found a rich and interesting phenomenology including the avoidance of big rip singularities due to loop quantum effects, smooth and non-linear transitions from matter domination to dark energy domination and finite periods of phantom domination with dynamical crossing of the phantom barrier.
81 - Jiali Shi , Jian-Pin Wu 2021
In this paper, we study the dynamics of k-essence in loop quantum cosmology (LQC). The study indicates that the loop quantum gravity (LQG) effect plays a key role only in the early epoch of the universe and is diluted at the later stage. The fixed points in LQC are basically consistent with that in standard Friedmann-Robertson-Walker (FRW) cosmology. For most of the attractor solutions, the stability conditions in LQC are in agreement with that for the standard FRW universe. But for some special fixed point, more tighter constraints are imposed thanks to the LQG effect.
We study oscillatory universes within the context of Loop Quantum Cosmology. We make a comparative study of flat and positively curved universes sourced by scalar fields with either positive or negative potentials. We investigate how oscillating universes can set the initial conditions for successful slow-roll inflation, while ensuring that the semi-classical bounds are satisfied. We observe rich oscillatory dynamics with negative potentials, although it is difficult to respect the semi-classical bounds in models of this type.
We develop a consistent analytic approach to determine the conditions under which slow roll inflation can arise when the inflaton is the same scalar field that is responsible for the bounce in Loop Quantum Cosmology (LQC). We find that the requirement that the energy density of the field is fixed at the bounce having to match a critical density has important consequences for its future evolution. For a generic potential with a minimum, we find different scenarios depending on the initial velocity of the field and whether it begins life in a kinetic or potential energy dominated regime. For chaotic potentials that start in a kinetic dominated regime, we find an initial phase of superinflation independent of the shape of the potential followed by a damping phase which slows the inflaton down, forcing it to turnaround and naturally enter a phase of slow-roll inflation. If we begin in a potential energy dominated regime, then the field undergoes a period where the corrections present in LQC damp its evolution once again forcing it to turnaround and enter a phase of slow roll inflation. On the other hand we show for the Starobinsky potential that inflation never occurs when we begin in a potential dominated regime. In fact traditional Starobinsky inflation has to start in a kinetic energy dominated regime, with corresponding tighter constraints on the initial value of the field for successful inflation than in the conventional case. Comparing our analytic results to published numerical ones, we find remarkable agreement especially when we consider the different epochs that are involved. In particular the values of key observables obtained from the two approaches are in excellent agreement, opening up the possibility of obtaining analytic results for the evolution of the density perturbations in these models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا