Do you want to publish a course? Click here

Electronic Selection Rules Controlling Dislocation Glide in bcc Metals

154   0   0.0 ( 0 )
 Added by Dennis Clougherty
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The validity of the structure-property relationships governing the deformation behavior of bcc metals was brought into question with recent {it ab initio} density functional studies of isolated screw dislocations in Mo and Ta. These existing relationships were semiclassical in nature, having grown from atomistic investigations of the deformation properties of the groups V and VI transition metals. We find that the correct form for these structure-property relationships is fully quantum mechanical, involving the coupling of electronic states with the strain field at the core of long $a/2<111>$ screw dislocations.



rate research

Read More

Dislocation motion in body centered cubic (bcc) metals displays a number of specific features that result in a strong temperature dependence of the flow stress, and in shear deformation asymmetries relative to the loading direction as well as crystal orientation. Here we develop a generalized dislocation mobility law in bcc metals, and demonstrate its use in discrete Dislocation Dynamics (DD) simulations of plastic flow in tungsten (W) micro pillars. We present the theoretical background for dislocation mobility as a motivating basis for the developed law. Analytical theory, molecular dynamics (MD) simulations, and experimental data are used to construct a general phenomenological description. The usefulness of the mobility law is demonstrated through its application to modeling the plastic deformation of W micro pillars. The model is consistent with experimental observations of temperature and orientation dependence of the flow stress and the corresponding dislocation microstructure.
The efficacy of strained layer threading dislocation filter structures in single crystal epitaxial layers is evaluated using numerical modeling for (001) face-centred cubic materials, such as GaAs or Si(1-x)Ge(x), and (0001) hexagonal materials such as GaN. We find that threading dislocation densities decay exponentially as a function of the strain relieved, irrespective of the fraction of threading dislocations that are mobile. Reactions between threading dislocations tend to produce a population that is a balanced mixture of mobile and sessile in (001) cubic materials. In contrast, mobile threading dislocations tend to be lost very rapidly in (0001) GaN, often with little or no reduction in the immobile dislocation density. The capture radius for threading dislocation interactions is estimated to be approx. 40nm using cross section transmission electron microscopy of dislocation filtering structures in GaAs monolithically grown on Si. We find that the minimum threading dislocation density that can be obtained in any given structure is likely to be limited by kinetic effects to approx. 1.0e+04 to 1.0e+05 per square cm.
We develop a model for the gliding of dislocations and plasticity in solid He-4. This model takes into account the Peierls barrier, multiplication and interaction of dislocations, as well as classical thermally and mechanically activated processes leading to dislocation glide. We specifically examine the dc stress-strain curve and how it is affected by temperature, strain rate, and dislocation density. As a function of temperature and shear strain, we observe plastic deformation and discuss how this may be related to the experimental observation of elastic anomalies in solid hcp He-4 that have been discussed in connection with the possibility of supersolidity or giant plasticity. Our theory gives several predictions for the dc stress strain curves, for example, the yield point and the change in the work-hardening rate and plastic dissipation peak, that can be compared directly to constant strain rate experiments and thus provide bounds on model parameters.
Knowledge on structures and energetics of nanovoids is fundamental to understand defect evolution in metals. Yet there remain no reliable methods able to determine essential structural details or to provide accurate assessment of energetics for general nanovoids. Here, we performed systematic first-principles investigations to examine stable structures and energetics of nanovoids in bcc metals, explicitly demonstrated the stable structures can be precisely determined by minimizing their Wigner-Seitz area, and revealed a linear relationship between formation energy and Wigner-Seitz area of nanovoids. We further developed a new physics-based model to accurately predict stable structures and energetics for arbitrary-sized nanovoids. This model was well validated by first-principles calculations and recent nanovoid annealing experiments, and showed distinct advantages over the widely used spherical approximation. The present work offers mechanistic insights that crucial for understanding nanovoid formation and evolution, being a critical step towards predictive control and prevention of nanovoid related damage processes in structural metals.
From their birth in the manufacturing process, materials inherently contain defects that affect the mechanical behavior across multiple length and time-scales, including vacancies, dislocations, voids and cracks. Understanding, modeling, and real-time simulation of the underlying stochastic micro-structure defect evolution is therefore vital towards multi-scale coupling and propagating numerous sources of uncertainty from atomistic to eventually aging continuum mechanics. We develop a graph-based surrogate model of dislocation glide for computation of dislocation mobility. We model an edge dislocation as a random walker, jumping between neighboring nodes of a graph following a Poisson stochastic process. The network representation functions as a coarse-graining of a molecular dynamics simulation that provides dislocation trajectories for an empirical computation of jump rates. With this construction, we recover the original atomistic mobility estimates, with remarkable computational speed-up and accuracy. Furthermore, the underlying stochastic process provides the statistics of dislocation mobility associated to the original molecular dynamics simulation, allowing an efficient propagation of material parameters and uncertainties across the scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا