We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schr{o}dinger model, that the three-particle S-matrix is factorizable in the first non-trivial order.
We investigate the quantum integrability of the Landau-Lifshitz model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product, and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin, and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
The S-matrix for each chiral sector of Liouville theory on a cylinder is computed from the loop expansion of correlation functions of a one-dimensional field theory on a circle with a non-local kinetic energy and an exponential potential. This action is the Legendre transform of the generating function of semiclassical scattering amplitudes. It is derived from the relation between asymptotic in- and out-fields. Its relevance for the quantum scattering process is demonstrated by comparing explicit loop diagrams computed from this action with other methods of computing the S-matrix, which are also developed.
We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent $z$, which governs the anisotropy between spatial and temporal scaling $t to lambda^z t$, $x to lambda x$; we focus on the case with $z=2$. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arise at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.
Observation of robust superconductivity in some of the iron based superconductors in the vicinity of a Lifshitz point where a spin density wave instability is suppressed as the {hole} band drops below the Fermi energy raise questions for spin-fluctuation theories. Here we discuss spin-fluctuation pairing for a bilayer Hubbard model, which goes through such a Lifshitz transition. We find s$_pm$ pairing with a transition temperature that peaks beyond the Lifshitz point and a gap function that has essentially the same magnitude but opposite sign on the incipient hole band as it does on the electron band that has a Fermi surface.
The Brown-Ravenhall operator was initially proposed as an alternative to describe the fermion-fermion interaction via Coulomb potential and subject to relativity. This operator is defined in terms of the associated Dirac operator and the projection onto the positive spectral subspace of the free Dirac operator. In this paper, we propose to analyze a modified version of the Brown-Ravenhall operator in two-dimensions. More specifically, we consider the Brown-Ravenhall operator with an attractive potential given by a Bessel-Macdonald function (also known as $K_0$-potential) using the Foldy-Wouthuysen unitary transformation. The $K_0$-potential is derived of the parity-preserving ${rm QED}_3$ model as a framework for evaluation of the fermion-fermion interaction potential. We prove that the two-dimensional Brown-Ravenhall operator with $K_0$-potential is bounded from below when the coupling constant is below a specified critical value (a property also referred to as stability). As by product, it is shown that the operator is in fact positive. We also investigate the location and nature of the spectrum of the Brown-Ravenhall operator with $K_0$-potential.