No Arabic abstract
We present the design, fabrication, and characterization of a metamaterial absorber which is resonant at terahertz frequencies. We experimentally demonstrate an absorptivity of 0.97 at 1.6 terahertz. Importantly, this free-standing absorber is only 16 microns thick resulting in a highly flexible material that, further, operates over a wide range of angles of incidence for both transverse electric and transverse magnetic radiation.
We have fabricated resonant terahertz metamaterials on free standing polyimide substrates. The low-loss polyimide substrates can be as thin as 5.5 micron yielding robust large-area metamaterials which are easily wrapped into cylinders with a radius of a few millimeters. Our results provide a path forward for creating multi-layer non-planar metamaterials at terahertz frequencies.
We present the design for an absorbing metamaterial element with near unity absorbance. Our structure consists of two metamaterial resonators that couple separately to electric and magnetic fields so as to absorb all incident radiation within a single unit cell layer. We fabricate, characterize, and analyze a metamaterial absorber with a slightly lower predicted absorbance of 96%. This achieves a simulated full width at half maximum (FWHM) absorbance of 4% thus making this material ideal for imaging purposes. Unlike conventional absorbers, our metamaterial consists solely of metallic elements. The underlying substrate can therefore be chosen independently of the substrates absorptive qualities and optimized for other parameters of interest. We detail the design and simulation process that led to our metamaterial, and our experiments demonstrate a peak absorbance greater than 88% at 11.5 GHz.
In this paper a planar electromagnetic absorber is introduced whose performance is maintained over a wide change of the incidence angle for both TE and TM polarization. The absorber comprises an array of patches over a grounded dielectric slab, with clear advantage in terms of manufacturability. It is shown that a high value of the relative permittivity of the substrate is essential for the operation of the absorber. The main contribution of the paper is to demonstrate and practically use the presence of an additional resonance of high-impedance surfaces when the plasma frequency of the wire medium comprising metallic vias in the dielectric substrate is close to the original resonance of the high-impedance surface. The presence of the vias between FSS and the ground plane is discussed both for the case of a high-permittivity absorber and for a low permittivity one. The radius of the vias influences the oblique incidence TM absorption, and when properly designed, the insertion of the vias result in bandwidth enlargement and higher absorption.
We present the theory, design, and realization of a polarization-insensitive metamaterial absorber for terahertz frequencies. We derive geometrical-independent conditions for effective medium absorbers in general, and for resonant metamaterials specically. Our fabricated design reaches and absorptivity of 78% at 1.145 Thz
A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-frequencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7GHz, and the absorption is kept large when the incident angle is smaller than 60 degrees. The experimental results agree well with the numerical simulation.