Do you want to publish a course? Click here

First Results From The Taiwanese-American Occultation Survey (TAOS)

253   0   0.0 ( 0 )
 Added by Zhi-Wei Zhang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Results from the first two years of data from the Taiwanese-American Occultation Survey (TAOS) are presented. Stars have been monitored photometrically at 4 Hz or 5 Hz to search for occultations by small (~3 km) Kuiper Belt Objects (KBOs). No statistically significant events were found, allowing us to present an upper bound to the size distribution of KBOs with diameters 0.5 km < D < 28 km.



rate research

Read More

The Taiwanese-American Occultation Survey (TAOS) operates four fully automatic telescopes to search for occultations of stars by Kuiper Belt Objects. It is a versatile facility that is also useful for the study of initial optical GRB afterglows. This paper provides a detailed description of the TAOS multi-telescope system, control software, and high-speed imaging.
The Taiwanese-American Occultation Survey (TAOS) will detect objects in the Kuiper Belt, by measuring the rate of occultations of stars by these objects, using an array of three to four 50cm wide-field robotic telescopes. Thousands of stars will be monitored, resulting in hundreds of millions of photometric measurements per night. To optimize the success of TAOS, we have investigated various methods of gathering and processing the data and developed statistical methods for detecting occultations. In this paper we discuss these methods. The resulting estimated detection efficiencies will be used to guide the choice of various operational parameters determining the mode of actual observation when the telescopes come on line and begin routine observations. In particular we show how real-time detection algorithms may be constructed, taking advantage of having multiple telescopes. We also discuss a retrospective method for estimating the rate at which occultations occur.
The Taiwanese-American Occultation Survey (TAOS) aims to detect serendipitous occultations of stars by small (about 1 km diameter) objects in the Kuiper Belt and beyond. Such events are very rare (<0.001 events per star per year) and short in duration (about 200 ms), so many stars must be monitored at a high readout cadence. TAOS monitors typically around 500 stars simultaneously at a 5 Hz readout cadence with four telescopes located at Lulin Observatory in central Taiwan. In this paper, we report the results of the search for small Kuiper Belt Objects (KBOs) in seven years of data. No occultation events were found, resulting in a 95% c.l. upper limit on the slope of the faint end of the KBO size distribution of q = 3.34 to 3.82, depending on the surface density at the break in the size distribution at a diameter of about 90 km.
We present the first results from the ALHAMBRA survey. ALHAMBRA will cover a relatively wide area (4 square degrees) using a purposely-designed set of 20 medium-band filters, down to an homogeneous magnitude limit AB~25 in most of them, adding also deep near-infrared imaging in JHK. To this aim we are using the Calar Alto 3.5m telescope. A small area of the ALHAMBRA survey has already been observed through our complete filter set, and this allows for the first time to check all the steps of the survey, including the pipelines that have been designed for the project, the fulfilment of the data quality expectations, the calibration procedures, and the photometric redshift machinery for which ALHAMBRA has been optimised. We present here the basic results regarding the properties of the galaxy sample selected in a 15x15 square arcmin area of the ALHAMBRA-8 field, which includes approximately 10000 galaxies with precise photometric redshift measurements. In a first estimate, approximately 500 of them must be galaxies with z>2.
We have attempted to analyse all the available data taken by XMM-Newton as it slews between targets. This slew survey, the resultant source catalogue and the analysis procedures used are described in an accompanying paper. In this letter we present the initial science results from the survey. To date, detailed source-searching has been performed in three X-ray bands (soft, hard and total) in the EPIC-pn 0.2-12 keV band over ~6300 sq.degrees (~15% of the sky), and of order 4000 X-ray sources have been detected (~55% of which have IDs). A great variety of sources are seen, including AGN, galaxies, clusters and groups, active stars, SNRs, low- and high-mass XRBs and white dwarfs. In particular, as this survey constitutes the deepest ever hard-band 2-12 keV all-sky survey, a large number of hard sources are detected. Furthermore, the great sensitivity and low-background of the EPIC-pn camera are especially suited to emission from extended sources, and interesting spatial structure is observed in many supernova remnants and clusters of galaxies. The instrument is very adept at mapping large areas of the X-ray sky. Also, as the slew survey is well matched to the ROSAT all-sky survey, long-term variability studies are possible, and a number of extremely variable X-ray sources, some possibly due to the tidal disruption of stars by central supermassive black holes, have been discovered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا