No Arabic abstract
The very large telescope (VLT) interferometer (VLTI) in its current operating state is equipped with high-order adaptive optics (MACAO) working in the visible spectrum. A low-order near-infrared wavefront sensor (IRIS) is available to measure non-common path tilt aberrations downstream the high-order deformable mirror. For the next generation of VLTI instrumentation, in particular for the designated GRAVITY instrument, we have examined various designs of a four channel high-order near-infrared wavefront sensor. Particular objectives of our study were the specification of the near-infrared detector in combination with a standard wavefront sensing system. In this paper we present the preliminary design of a Shack-Hartmann wavefront sensor operating in the near-infrared wavelength range, which is capable of measuring the wavefronts of four telescopes simultaneously. We further present results of our design study, which aimed at providing a first instrumental concept for GRAVITY.
GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. Combining beams from four telescopes, GRAVITY will provide an astrometric precision of order 10 micro-arcseconds, imaging resolution of 4 milli-arcseconds, and low and medium resolution spectro-interferometry, pushing its performance far beyond current infrared interfero- metric capabilities. To maximise the performance of GRAVITY, adaptive optics correction will be implemented at each of the VLT Unit Telescopes to correct for the effects of atmospheric turbulence. To achieve this, the GRAVITY project includes a development programme for four new wavefront sensors (WFS) and NIR-optimized real time control system. These devices will enable closed-loop adaptive correction at the four Unit Telescopes in the range 1.4-2.4 {mu}m. This is crucially important for an efficient adaptive optics implementation in regions where optically bright references sources are scarce, such as the Galactic Centre. We present here the design of the GRAVITY wavefront sensors and give an overview of the expected adaptive optics performance under typical observing conditions. Benefiting from newly developed SELEX/ESO SAPHIRA electron avalanche photodiode (eAPD) detectors providing fast readout with low noise in the near-infrared, the AO systems are expected to achieve residual wavefront errors of leq400 nm at an operating frequency of 500 Hz.
MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of 1000 fibers deployable over a field of view of 500 squ
The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from 4 curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1mm on either side of focus. In this paper we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intra- and extra-focal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing.
We describe the concept of splitting spatial frequency perturbations into some kind of pupil planes wavefront sensors. Further to the existing approach of dropping higher spatial frequency to suppress aliasing effects (the so-called spatial filtered Shack-Hartmann), we point out that spatial frequencies splitting and mixing of these in a proper manner, could be handled in order to exhibit some practical or fundamental advantages. In this framework we describe the idea behind such class of concepts and we derive the relationship useful to determine if, by which extent, and under what kind of merit function, these devices can overperform existing conventional sensors.
The high angular resolution and dynamic range achieved by the NACO adaptive optics system on the VLT is an excellent tool to study the morphology of Planetary Nebulae (PNe). We observed four stars in different evolutionary stages from the AGB to the PNe phase. The images of the inner parts of the PN Hen 2-113 reveal the presence of a dusty torus tilted with respect to all the other structures of the nebula and the present of hot dust close to the hot central star. The NACO observations of Roberts 22 reveal an amazingly complex nebular morphology with a S-shape that can be interpreted in terms of the warped disc scenario of Icke (2003). Combined NACO and MIDI (the VLTI mid-infrared interferometer) observations of the nebula OH 231.8+4.2 have enabled us to resolve a very compact (diameter of 30-40 mas, corresponding to 40-50 a.u.) dusty structure in the core of the nebula. Finally, recent observations of the AGB star V Hydrae show that this star present a departure from spherical symmetry in its inner shell and is probably on its way to become an asymmetrical planetary nebula. These observations show that NACO is a great instrument for the discovery and study of small structures in circumstellar envelopes and PNe and a good complement to interferometric devices.