Do you want to publish a course? Click here

The nonlinear Schrodinger equations with combined nonlinearities of power-type and Hartree

359   0   0.0 ( 0 )
 Added by Zheng Han
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

This paper is devoted to a comprehensive study of the nonlinear Schrodinger equations with combined nonlinearities of the power-type and Hartree-type in any dimension nge3. With some structural conditions, a nearly whole picture of the interactions of these nonlinearities in the energy space is given. The method is based on the Morawetz estimates and perturbation principles.



rate research

Read More

We investigate normalized solutions for the Schr{o}dinger equation with combined Hartree type and power nonlinearities, namely begin{equation*} left{ begin{array}{ll} -Delta u+lambda u=gamma (I_{alpha }ast leftvert urightvert ^{p})|u|^{p-2}u+mu |u|^{q-2}u & quad text{in}quad mathbb{R}^{N}, int_{mathbb{R}^{N}}|u|^{2}dx=c, & end{array}% right. end{equation*} where $Ngeq 2$ and $c>0$ is a given real number. Under different assumptions on $gamma ,mu ,p$ and $q$, we prove several nonexistence, existence and multiplicity results. In particular, we are more interested in the cases when the competing effect of Hartree type and power nonlinearities happens, i.e. $gamma mu <0,$ including the cases $gamma <0,mu >0$ and $% gamma >0,mu <0.$ Due to the different strength of two types of nonlinearities, we find some differences in results and in the geometry of the corresponding functionals between these two cases.
We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. By using a fractional order adaptation of this method, we show that the results of [LLLS20a, LLLS20b] remain valid for general power type nonlinearities.
115 - Lintao Liu , Haibo Chen , Jie Yang 2021
In this paper, we study the existence and asymptotic properties of solutions to the following fractional Kirchhoff equation begin{equation*} left(a+bint_{mathbb{R}^{3}}|(-Delta)^{frac{s}{2}}u|^{2}dxright)(-Delta)^{s}u=lambda u+mu|u|^{q-2}u+|u|^{p-2}u quad hbox{in $mathbb{R}^3$,} end{equation*} with a prescribed mass begin{equation*} int_{mathbb{R}^{3}}|u|^{2}dx=c^{2}, end{equation*} where $sin(0, 1)$, $a, b, c>0$, $2<q<p<2_{s}^{ast}=frac{6}{3-2s}$, $mu>0$ and $lambdainmathbb{R}$ as a Lagrange multiplier. Under different assumptions on $q<p$, $c>0$ and $mu>0$, we prove some existence results about the normalized solutions. Our results extend the results of Luo and Zhang (Calc. Var. Partial Differential Equations 59, 1-35, 2020) to the fractional Kirchhoff equations. Moreover, we give some results about the behavior of the normalized solutions obtained above as $murightarrow0^{+}$.
In this note we consider differential equations driven by a signal $x$ which is $gamma$-Holder with $gamma>1/3$, and is assumed to possess a lift as a rough path. Our main point is to obtain existence of solutions when the coefficients of the equation behave like power functions of the form $|xi|^{kappa}$ with $kappain(0,1)$. Two different methods are used in order to construct solutions: (i) In a 1-d setting, we resort to a rough version of Lampertis transform. (ii) For multidimensional situations, we quantify some improved regularity estimates when the solution approaches the origin.
200 - Juncheng Wei , Yuanze Wu 2021
In this paper, we consider the following nonlinear Schr{o}dinger equations with mixed nonlinearities: begin{eqnarray*} left{aligned &-Delta u=lambda u+mu |u|^{q-2}u+|u|^{2^*-2}uquadtext{in }mathbb{R}^N, &uin H^1(bbr^N),quadint_{bbr^N}u^2=a^2, endalignedright. end{eqnarray*} where $Ngeq3$, $mu>0$, $lambdainmathbb{R}$ and $2<q<2^*$. We prove in this paper begin{enumerate} item[$(1)$]quad Existence of solutions of mountain-pass type for $N=3$ and $2<q<2+frac{4}{N} $. item[$(2)$]quad Existence and nonexistence of ground states for $2+frac{4}{N}leq q<2^*$ with $mu>0$ large. item[$(3)$]quad Precisely asymptotic behaviors of ground states and mountain-pass solutions as $muto0$ and $mu$ goes to its upper bound. end{enumerate} Our studies answer some questions proposed by Soave in cite[Remarks~1.1, 1.2 and 8.1]{S20}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا