No Arabic abstract
A polymer chain containing $N$ monomers confined in a finite cylindrical tube of diameter $D$ grafted at a distance $L$ from the open end of the tube may undergo a rather abrupt transition, where part of the chain escapes from the tube to form a crown-like coil outside of the tube. When this problem is studied by Monte Carlo simulation of self-avoiding walks on the simple cubic lattice applying a cylindrical confinement and using the standard pruned-enriched Rosenbluth method (PERM), one obtains spurious results, however: with increasing chain length the transition gets weaker and weaker, due to insufficient sampling of the escaped states, as a detailed analysis shows. In order to solve this problem, a new variant of a biased sequential sampling algorithm with re-sampling is proposed, force-biased PERM: the difficulty of sampling both phases in the region of the first order transition with the correct weights is treated by applying a force at the free end pulling it out of the tube. Different strengths of this force need to be used and reweighting techniques are applied. Using rather long chains (up to N=18000) and wide tubes (up to D=29 lattice spacings), the free energy of the chain, its end-to-end distance, the number of imprisoned monomers can be estimated, as well as the order parameter and its distribution. It is suggested that this new algorithm should be useful for other problems involving state changes of polymers, where the different states belong to rather disjunct valleys in the phase space of the system.
Using analytical techniques and Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a narrow channel of width $R$ embedded in two dimensions, driven by a force proportional to the number of monomers in the channel. Such a setup mimics typical experimental situations in nano/micro-fluidics. During the the translocation process if the monomers in the channel can sufficiently quickly assume steady state motion, we observe the scaling $tausim N/F$ of the translocation time $tau$ with the driving force $F$ per bead and the number $N$ of monomers per chain. With smaller channel width $R$, steady state motion cannot be achieved, effecting a non-universal dependence of $tau$ on $N$ and $F$. From the simulations we also deduce the waiting time distributions under various conditions for the single segment passage through the channel entrance. For different chain lengths but the same driving force, the curves of the waiting time as a function of the translocation coordinate $s$ feature a maximum located at identical $s_{mathrm{max}}$, while with increasing the driving force or the channel width the value of $s_{mathrm{max}}$ decreases.
We study the relaxation dynamics of a coarse-grained polymer chain at different degrees of stretching by both analytical means and numerical simulations. The macromolecule is modelled as a string of beads, connected by anharmonic springs, subject to a tensile force applied at the end monomer of the chain while the other end is fixed at the origin of coordinates. The impact of bond non-linearity on the relaxation dynamics of the polymer at different degrees of stretching is treated analytically within the Gaussian self-consistent approach (GSC) and then compared to simulation results derived from two different methods: Monte-Carlo (MC) and Molecular Dynamics (MD). At low and medium degrees of chain elongation we find good agreement between GSC predictions and the Monte-Carlo simulations. However, for strongly stretched chains the MD method, which takes into account inertial effects, reveals two important aspects of the nonlinear interaction between monomers: (i) a coupling and energy transfer between the damped, oscillatory normal modes of the chain, and (ii) the appearance of non-vanishing contributions of a continuum of frequencies around the characteristic modes in the power spectrum of the normal mode correlation functions.
We investigate the crystallization mechanism of a single, flexible homopolymer chain with short range attractions. For a sufficiently narrow attractive well, the system undergoes a first-order like freezing transition from an expanded disordered coil to a compact crystalline state. Based on a maximum likelihood analysis of committor values computed for configurations obtained by Wang-Landau sampling, we construct a non-linear string reaction coordinate for the coil-to-crystal transition. In contrast to a linear reaction coordinate, the string reaction coordinate captures the effect of different degrees of freedom controlling different stages of the transition. Our analysis indicates that a combination of the energy and the global crystallinity parameter Q6 provide the most accurate measure for the progress of the transition. While the crystallinity parameter Q6 is most relevant in the initial stages of the crystallization, the later stages are dominated by a decrease in the potential energy.
The escape transition of a polymer mushroom (a flexible chain grafted to a flat non-adsorbing substrate surface in a good solvent) occurs when the polymer is compressed by a cylindrical piston of radius $R$, that by far exceeds the chain gyration radius. At this transition, the chain conformation abruptly changes from a two-dimensional self-avoiding walk of blobs (of diameter $H$, the height of the piston above the substrate) to a flower conformation, i.e. stretched almost one-dimensional string of blobs (with end-to-end distance $approx R$) and an escaped part of the chain, the crown, outside the piston. The extension of this problem to the case of star polymers with $f$ arms is considered, assuming that the center of the star is grafted to the substrate. The question is considered whether under compression the arms escape all together, or whether there occurs an arm by arm escape under increasing compression. Both self-consistent field calculations and Molecular Dynamics simulations are found to favor the latter scenario.
Two of the most successful methods that are presently available for simulating the quantum dynamics of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD). Despite their conceptual differences, practical implementations of these methods differ in just two respects: the choice of the Parrinello-Rahman mass matrix and whether or not a thermostat is applied to the internal modes of the ring polymer during the dynamics. Here we explore a method which is halfway between the two approximations: we keep the path integral bead masses equal to the physical particle masses but attach a Langevin thermostat to the internal modes of the ring polymer during the dynamics. We justify this by showing analytically that the inclusion of an internal mode thermostat does not affect any of the desirable features of RPMD: thermostatted RPMD (TRPMD) is equally valid with respect to everything that has actually been proven about the method as RPMD itself. In particular, because of the choice of bead masses, the resulting method is still optimum in the short-time limit, and the transition state approximation to its reaction rate theory remains closely related to the semiclassical instanton approximation in the deep quantum tunneling regime. In effect, there is a continuous family of methods with these properties, parameterised by the strength of the Langevin friction. Here we explore numerically how the approximation to quantum dynamics depends on this friction, with a particular emphasis on vibrational spectroscopy. We find that a broad range of frictions approaching optimal damping give similar results, and that these results are immune to both the resonance problem of RPMD and the curvature problem of CMD.