Do you want to publish a course? Click here

A red supergiant nebula at 25 micron: arcsecond scale mass-loss asymmetries of mu Cep

145   0   0.0 ( 0 )
 Added by W. J. de Wit
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present diffraction limited (0.6) 24.5micron Subaru/COMICS images of the red supergiant mu Cep. We report the detection of a circumstellar nebula, that was not detected at shorter wavelengths. It extends to a radius of at least 6 in the thermal infrared. On these angular scales, the nebula is roughly spherical, in contrast, it displays a pronounced asymmetric morphology closer in. We simultaneously model the azimuthally averaged intensity profile of the nebula and the observed spectral energy distribution using spherical dust radiative transfer models. The models indicate a constant mass-loss process over the past 1000 years, for mass-loss rates a few times 10^(-7) Msun/yr. This work supports the idea that at least part of the asymmetries in shells of evolved massive stars and supernovae may be due to the mass-loss process in the red supergiant phase.



rate research

Read More

A tomographic method, aiming at probing velocity fields at depth in stellar atmospheres, is applied to the red supergiant star {mu} Cep and to snapshots of 3D radiative-hydrodynamics simulation in order to constrain atmospheric motions and relate them to photometric variability.
Red supergiant stars are surrounded by a gaseous and dusty circumstellar environment created by their mass loss which spreads heavy elements into the interstellar medium. The structure and the dynamics of this envelope are crucial to understand the processes driving the red supergiant mass loss and the shaping of the pre-supernova ejecta. We have observed the emission from the CO $J = 2-1$ line from the red supergiant star $mu$~Cep with the NOEMA interferometer. In the line the synthesized beam was $0.92 times 0.72$~arcsec ($590 times 462$~au at 641~pc). The continuum map shows only the unresolved contribution of the free-free emission of the star chromosphere. The continuum-subtracted channel maps reveal a very inhomogeneous and clumpy circumstellar environment. In particular, we detected a bright CO clump, as bright as the central source in the line, at 1.80~arcsec south-west from the star, in the blue channel maps. After a deprojection of the radial velocity assuming two different constant wind velocities, the observations were modelled using the 3D radiative transfer code textsc{lime} to derive the characteristics of the different structures. We determine that the gaseous clumps observed around $mu$~Cep are responsible for a mass loss rate of $(4.9 pm 1.0) times 10^{-7}~{rm M}_odot,{rm yr}^{-1}$, in addition to a spatially unresolved wind component with an estimated mass-loss rate of $2.0 times 10^{-6}~{rm M}_odot,{rm yr}^{-1}$. Therefore, the clumps have a significant role in $mu$~Ceps mass loss ($ge 25 %$). We cannot exclude that the unresolved central outflow may be made of smaller unresolved clumps.
Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 - 30msun the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolution, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new mdot prescription calibrated to RSGs with initial masses between 10 - 25msun, which unlike previous prescriptions does not over estimate mdot for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass-loss by recomputing the evolution of stars with masses 12-27msun with the new mdot-prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core-collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30msun to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.
Red supergiants are cool massive stars and are the largest and the most luminous stars in the universe. They are characterized by irregular or semi-regular photometric variations, the physics of which is not clearly understood. The paper aims at deriving the velocity field in the red supergiant star $mu$ Cep and relating it to the photometric variability with the help of the tomographic method. The tomographic method allows to recover the line-of-sight velocity distribution over the stellar disk and within different optical-depth slices. The method is applied to a series of high-resolution spectra of $mu$ Cep, and these results are compared to those obtained from 3D radiative-hydrodynamics CO5BOLD simulations of red supergiants. Fluctuations in the velocity field are compared with photometric and spectroscopic variations, the latter being derived from the TiO band strength and serving (at least partly) a proxy of the variations in effective temperature. The tomographic method reveals a phase shift between the velocity and spectroscopic/photometric variations. This phase shift results in a hysteresis loop in the temperature - velocity plane, with a timescale of a few hundred days, similar to the photometric one. The similarity between the hysteresis loop timescale measured in $mu$ Cep and the timescale of acoustic waves disturbing the convective pattern suggests that such waves play an important role in triggering the hysteresis loops.
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula. Its structure and dynamics have been studied previously through high-resolution imaging and spectroscopy, and it appears dynamically similar to the ring structure around SN 1987A. Here we present long-slit spectroscopy of the circumstellar nebula around Sher 25, and of the background nebula of the host cluster NGC 3603. We perform a detailed nebular abundance analysis to measure the gas-phase abundances of oxygen, nitrogen, sulphur, neon and argon. The oxygen abundance in the circumstellar nebula (12 + log[O/H] = 8.61 +/- 0.13 dex) is similar to that in the background nebula (8.56 +/- 0.07), suggesting the composition of the host cluster is around solar. However, we confirm that the circumstellar nebula is very rich in nitrogen, with an abundance of 8.91 +/- 0.15, compared to the background value of 7.47 +/- 0.18. A new analysis of the stellar spectrum with the FASTWIND model atmosphere code suggests that the photospheric nitrogen and oxygen abundances in Sher 25 are consistent with the nebular results. While the nitrogen abundances are high, when compared to stellar evolutionary models they do not unambiguously confirm that the star has undergone convective dredge-up during a previous red supergiant phase. We suggest that the more likely scenario is that the nebula was ejected from the star while it was in the blue supergiant phase. The stars initial mass was around 50 M_sun, which is rather too high for it to have had a convective envelope stage as a red supergiant. Rotating stellar models that lead to mixing of core-processed material to the stellar surface during core H-burning can quantitatively match the stellar results with the nebula abundances.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا