Do you want to publish a course? Click here

Nanoconcentration of Terahertz Radiation in Plasmonic Waveguides

167   0   0.0 ( 0 )
 Added by Maxim Durach
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent years have seen an explosive research and development of nanoplasmonics in the visible and near-infrared (near-ir) frequency regions. One of the most fundamental effects in nanoplasmonics is nano-concentration of optical energy. Plasmonic nanofocusing has been predicted and experimentally achieved. It will be very beneficial for the fundamental science, engineering, environmental, and defense applications to be able to nano-concentrate terahertz radiation (frequency 1 - 10 THz or vacuum wavelength 300 - 30 microns). This will allow for the nanoscale spatial resolution for THz imaging and introduce the THz spectroscopy on the nanoscale, taking full advantage of the rich THz spectra and submicron to nanoscale structures of many engineering, physical, and biological objects of wide interest: electronic components (integrated circuits, etc.), bacteria, their spores, viruses, macromolecules, carbon clusters and nanotubes, etc. In this Letter we establish the principal limits for the nanoconcentration of the THz radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration We predict that the adiabatic compression of THz radiation from the initial spot size of light wavelength to the final size of R = 100 - 250 nm can be achieved with the THz radiation intensity increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for the THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses will allow the observation of nonlinear THz effects and a carrying out a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative.



rate research

Read More

We report a novel approach for on-chip electrical detection of the radiation guided by dielectric-loaded surface plasmon polariton waveguides (DLSPPW) and DLSPPW-based components. The detection is realized by fabricating DLSPPW components on the surface of a gold (Au) pad supported by a silicon (Si) substrate supplied with aluminum pads facilitating electrical connections, with the gold pad being perforated in a specific locations below the DLSPPWs in order to allow a portion of the DLSPPW-guided radiation to leak into the Si-substrate, where it is absorbed and electrically detected. We present two-dimensional photocurrent maps obtained when the laser beam is scanning across the gold pad containing the fabricated DLSPPW components that are excited via grating couplers located at the DLSPPW tapered terminations. By comparing photocurrent signals obtained when scanning over a DLSPPW straight waveguide with those related to a DLSPPW racetrack resonator, we first determine the background signal level and then the corrected DLSPPW resonator spectral response, which is found consistent with that obtained from full wave numerical simulations. The approach developed can be extended to other plasmonic waveguide configurations and advantageously used for rapid characterization of complicated plasmonic circuits.
We develop a theory of the helicity driven nolinear dc response of gated two-dimensional electron gas to the terahertz radiation. We demonstrate that the helicity-sensitive part of the response dramatically increases in the vicinity of the plasmonic resonances and oscillates with the phase shift between excitation signals on the source and drain. The resonance line shape is an asymmetric function of the frequency deviation from the resonance. In contrast, the helicity-insensitive part of the response is symmetrical. These properties yield significant advantage for using plasmonic detectors as terahertz and far infrared spectrometers and interferometers.
The phenomenon of a dispersion bandgap opening between low-loss spectral windows of odd and even plasmonic modes in a layered insulator-metal-insulator plasmonic waveguide is introduced. Beginning with a three layer plasmonic dispersion relation, we explain and numerically confirm the existence of the plasmonic bandgap, and investigate its properties at a very broad spectrum range from ultraviolet to far infrared. The nature of the observed bandgap opening is explained in terms of the near-zero value of an effective permittivity for plasmonic modes in the waveguide. The adjustment of the plasmonic bandgap spectrum is demonstrated with the structural modification of the plasmonic waveguide. As an application example, we illustrate a new concept of coupling control between surface plasmons and free-space excitation waves, by employing a tapered non-adiabatic insulator-metal-insulator waveguide.
150 - Guangyuan Li , Stefano Palomba , 2019
Plasmonic waveguides are an essential element of nanoscale coherent sources, including nanolasers and four-wave mixing (FWM) devices. Here we report how the design of the plasmonic waveguide needs to be guided by the ultimate application. This contrasts with traditional approaches in which the waveguide is considered in isolation. We find that hybrid plasmonic waveguides, with a nonlinear material sandwiched between the metal substrate and a high-index layer, are best suited for FWM applications, whereas metallic wedges are preferred in nanolasers. We also find that in plasmonic nanolasers high-index buffer layers perform better than more traditional low-index buffers.
Most recently, two remarkable papers [New J. Phys. 21, 113004 (2019); IEEE J. Sel. Top. Quantum Electron 27, 1 (2020)] propose broadband complete transfer terahertz (THz) surface plasmon polaritons (SPPs) waveguide coupler by applying coherent quantum control -- Stimulated Raman adiabatic passage (STIRAP). However, previous researches request three SPPs waveguides coupler. In this paper, we propose a new design of a broadband complete transfer THz SPPs coupler with an innovative structure of two waveguides by employing two state adiabatic following. In order to realize this design, we introduce the detuning parameter into the coupling equation of SPPs waveguides for the first time. We believe that this finding will improve the THz communication domain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا