Do you want to publish a course? Click here

Superfluid density near the critical temperature in the presence of random planar defects

296   0   0.0 ( 0 )
 Added by Denis Dalidovich
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The superfluid density near the superconducting transition is investigated in the presence of spatial inhomogeneity in the critical temperature. Disorder is accounted for by means of a random $T_c$ term in the conventional Ginzburg-Landau action for the superconducting order parameter. Focusing on the case where a low-density of randomly distributed planar defects are responsible for the variation of $T_c$, we derive the lowest order correction to the superfluid density in powers of the defect concentration. The correction is calculated assuming a broad Gaussian distribution for the strengths of the defect potentials. Our results are in a qualitative agreement with the superfluid density measurements in the underdoped regime of high-quality YBCO crystals by Broun and co-workers.



rate research

Read More

We report on high-pressure (p_max = 2.1 GPa) muon spin rotation experiments probing the temperature-dependent magnetic penetration depth in the layered superconductor 2H-NbSe_2. Upon increasing the pressure, we observe a substantial increase of the superfluid density n_s, which we find to scale linearly with T_c. This linear scaling is considered a hallmark feature of unconventional superconductivity, especially in high-temperature cuprate superconductors. Our current results, along with our earlier findings on 1T-MoTe_2 (Z. Guguchia et. al., Nature Communications 8, 1082 (2017)), demonstrate that this linear relation is also an intrinsic property of the superconductivity in transition metal dichalcogenides, whereas the ratio T_c/T_F is approximately a factor of 20 lower than the ratio observed in hole-doped cuprates. We, furthermore, find that the values of the superconducting gaps are insensitive to the suppression of the quasi-two-dimensional CDW state, indicating that the CDW ordering and the superconductivity in 2H-NbSe_2 are independent of each other.
When a second-order magnetic phase transition is tuned to zero temperature by a non-thermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these `quantum critical superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature $T_c$ often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below $T_c$ is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points showing that the superfluid density in these nodal superconductors universally exhibit, unlike the expected $T$-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this non-integer power-law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta $bm{k}$ close to the nodes in the superconducting energy gap $Delta(bm{k})$. We suggest that such `nodal criticality may have an impact on low-energy properties of quantum critical superconductors.
In this paper we use London Langevin molecular dynamics simulations to investigate the vortex matter melting transition in the highly anisotropic high-temperature superconductor material Bi_2Sr_2CaCu_2O$_{8+delta}$ in the presence of low concentration of columnar defects (CDs). We reproduce with further details our previous results obtained by using Multilevel Monte Carlo simulations that showed that the melting of the nanocrystalline vortex matter occurs in two stages: a first stage melting into nanoliquid vortex matter and a second stage delocalization transition into a homogeneous liquid. Furthermore, we report on new dynamical measurements in the presence of a current that identifies clearly the irreversibility line and the second stage delocalization transition. In addition to CDs aligned along the c-axis we also simulate the case of tilted CDs which are aligned at an angle with respect to the applied magnetic field. Results for CDs tilted by $45^{circ}$ with respect to c-axis show that the locations of the melting and delocalization transitions are not affected by the tilt when the ratio of flux lines to CDs remains constant. On the other hand we argue that some dynamical properties and in particular the position of the irreversibility line should be affected.
We study disorder effects upon the temperature behavior of the upper critical magnetic field in attractive Hubbard model within the generalized $DMFT+Sigma$ approach. We consider the wide range of attraction potentials $U$ - from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose - Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder - from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of $H_{c2}(T)$, especially at low temperatures. In BEC limit and in the region of BCS - BEC crossover $H_{c2}(T)$ dependence becomes practically linear. Disordering also leads to the general growth of $H_{c2}(T)$. In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of transition point and to the increase of $H_{c2}(T)$ in low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of $H_{c2}(T)$ at low temperatures, so that the $H_{c2}(T)$ dependence becomes concave. In BCS - BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to $T_{c}$. However, in the low temperature region $H_{c2}(T)$ may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase $H_{c2}(T=0)$ also making $H_{c2}(T)$ dependence concave.
Three independent components of critical current density, one for the H//c axis and the other two for the H//ab plane, have been studied in CaKFe4As4 single crystals. When the magnetic field is applied along the c axis, we observed fish-tail-like peaks in the M-H hysteresis loop, and the magnetization at higher temperatures exceeds that at lower temperatures at high fields. When the field is applied parallel to the ab plane, a dip structure is observed in the M-H hysteresis loop near the self-field. In addition, for the H//ab plane, we succeeded in separately evaluating the large and significantly anisotropic in-plane and out-of-plane Jc. Transmission electron microscopy revealed the presence of planar defects parallel to the ab plane in CaKFe4As4, which have not been observed in any other iron-based superconductors. We discuss the possible relationship between the anomalous Jc behavior and the planar defects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا